Optimizing Abrasive Water Jet Parameters for Enhanced Interactivity in Metal-Stacked Hybrid Fiber Laminates
Year 2025,
Volume: 9 Issue: 1, 28 - 36
Gnanasekaran K
,
Rajesh M
,
Hariram V
Abstract
High strength and shock-absorbing hybrid Fibre Laminate (HFL) machining is required to get the required geometric shape and size and to test the functioning under various impact protection circumstances. The compression molding process was adopted to fabricate the HFL. Skin titanium metal and alternately interlaced durable jute and high strength Kevlar fiber. A Central Composite Design (CCD)-Response Surface Technique (RST) was used to conduct the experiments with varying abrasive water jet parameters like WP-water pressure, TS-traverse speed, SOD-stand-off distance, and AQ-abrasive quantity. The desirability optimization technique adopted to minimize the surface roughness (Ra) and kerf angle (KA). An experimental examination shows that when water jet pressure was raised to its maximum value, the Ra and KA considerably reduced by 28.69% and 8.25%, respectively. Similar to how the Ra and KR significantly reduced by an extent of 7.4% and 3.5% when the abrasive quantity was increased to its higher value. However, when SOD and TS increased, a reversal impact on Ra and KA was seen. According to surface topology study, the brittle fracture occurs with micro-chipping, and for the kevlar fiber, bulk machining.
Supporting Institution
This work was supported by the Hindustan Institute of Technology and Science, Padur, Chennai-603103 [SEED/CRC/HITS/2022-23-008].
References
- Etri, H. E., Korkmaz, M. E., Gupta, M. K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. The International Journal of Advanced Manufacturing Technology, 123(9), 2965-2991.
- Costa, R. D. F. S., Sales-Contini, R. C. M., Silva, F. J. G., Sebbe, N., & Jesus, A. M. P. (2023). A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals, 13, 638.
- Krishnakumar, S. (1994). Fiber Metal Laminates — The Synthesis of Metals and Composites. Materials and Manufacturing Processes, 9, 295–354.
- Sherkatghanad, E., Lang, L., Blala, H., Li, L., & Alexandrov, S. (2019). Fiber Metal Laminate Structure, a good replacement for monolithic and composite materials. IOP Conference Series: Materials Science and Engineering, 576, 012034.
- Ali, A., Pan, L., Duan, L., Zheng, Z., & Sapkota, B. (2016). Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications. Composite Structures, 158,199–207
Blala, H., Lang, L., Khan, S., Li, L., Sijia, S., Guelailia, A., Slimane, S. A., & Alexandrov, S. (2023). Forming challenges of small and complex fiber metal laminate parts in aerospace applications—a review. The International Journal of Advanced Manufacturing Technology, 126, 2509–2543.
- Etri, H. El, Korkmaz, M. E., Gupta, M. K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. The International Journal of Advanced Manufacturing Technology, 123, 2965–2991.
- Ding, Z., Wang, H., Luo, J., & Li, N. (2021). A review on forming technologies of fibre metal laminates. International Journal of Lightweight Materials and Manufacture, 4,110–126.
- Dhar Malingam, S., Jumaat, F. A., Ng, L. F., Subramaniam, K., & Ab Ghani, A. F.( 2018). Tensile and impact properties of cost‐effective hybrid fiber metal laminate sandwich structures. Advances in Polymer Technology, 37, 2385–2393.
- Giridharan, D., & Rakham, B. (2018). Experimental Analysis of Fibre Metal Laminates. IOP Conference Series: Materials Science and Engineering, 455: 012037.
- Chen, Y., Wang, Y., & Wang, H. (2020). Research Progress on Interlaminar Failure Behavior of Fiber Metal Laminates. Advances in Polymer Technology, 2020(1), 3097839.
- Serubibi, A., Hazell, P. J., Escobedo, J. P., Wang, H., Oromiehie, E., Prusty, G. B., Phillips, A. W., & St John, N. A. (2023). Fibre-metal laminate structures: High-velocity impact, penetration, and blast loading – A review. Composites Part A: Applied Science and Manufacturing, 173, 107674.
- Kirubakaran, R., Kaliyamoorthy, R., Munusamy, R., & Annamalai, B. (2023). Mechanical and vibration behavior of surface‐modified titanium sheet interleaved with woven basalt/flax fiber metal laminates. Polymer Composites, 44, 8442–8453.
- Ramraji, K., Rajkumar, K., & Sabarinathan, P. (2020). Mechanical and free vibration properties of skin and core designed basalt woven intertwined with flax layered polymeric laminates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234, 4505–4519.
- Şimşek Türker, Y., & Kılınçarslan, Ş. (2024). Experimental and analytical investigation of the effect of layer number and thickness on the bending properties of glulam beams. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27, 141–150.
- Özbek, Ö., Bozkurt, Ö., & Erklig, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4,197–202.
- Ramesh, M., Palanikumar, K., & Reddy, K. H. (2013). Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Composites Part B: Engineering, 48,1–9.
- Karacor, B., & Özcanlı, M. (2021). Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science And Technology, 5, 358–371.
- Yeter, E. (2019). Investigation of Ballistic Impact Response of Aluminum Alloys Hybridized with Kevlar/Epoxy Composites TT - Investigation of Ballistic Impact Response of Aluminum Alloys Hybridized with Kevlar/Epoxy Composites. Politeknik Dergisi, 22, 219–227.
- Naveen, M. R., Kamaraj, L., & Ponnarengan, H. (2024). Adhesion strength and mechanical properties of nanoclay modified hybrid kevlar/jute‐epoxy fiber metal laminate. Polymer Composites.
- Wang, Y., Sun, W., & Cao, L. (2024). Tensile and flexural mechanical attributes of hybrid carbon/basalt fiber metal laminates under various hybridization and stacking sequences. Composites Part A: Applied Science and Manufacturing, 177, 107942.
- Babaytsev, A., Lopatin, S., & Nasonov, F. (2024). Study of dynamic characteristics of hybrid titanium-polymer composite materials. International Journal for Computational Civil and Structural Engineering, 20, 109–115.
- Debnath, K., Sisodia, M., Kumar, A., & Singh, I. 2016. Damage-free hole making in fiber-reinforced composites: an innovative tool design approach. Materials and Manufacturing Processes, 31, 1400–1408.
- Xu, J., Zhou, L., Chen, M., & Ren, F. (2019). Experimental study on mechanical drilling of carbon/epoxy composite-Ti6Al4V stacks. Materials and Manufacturing Processes, 34, 715–725.
- Ishfaq, K., Mufti, N., Ahmed, N., & Pervaiz, S. (2018). Abrasive waterjet cutting of cladded material: kerf taper and MRR analysis. Materials and Manufacturing Processes, 34, 1–10.
- Xu, J., li, C., Chen, M., & Ren, F. (2019). A comparison between vibration assisted and conventional drilling of CFRP/Ti6Al4V stacks. Materials and Manufacturing Processes, 34,1182–1193.
- Karthikeyan, M., Pandian, S. M. V., & Vijayakumar, R. (2023). Investigation on Metal Hybrid Fibres Laminate (MHFL) in hybrid machining. Journal of Manufacturing Processes, 101, 835–853.
- Rao, S., Sethi, A., Das, A. K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A. R., & Mandal, A. (2017). Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Materials and Manufacturing Processes, 32, 1612–1621.
- Şimşek, T., Baris, M., Ozcan, S., & Akkurt, A. (2019). Investigation of machinability properties of laser treated S355JR carbon steel with ZRB2 nanoparticles. Turkish Journal of Engineering, 3, 51–59
- Kechagias, J., Petropoulos, G., & Vaxevanidis, N. (2012). Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. The International Journal of Advanced Manufacturing Technology, 62, 635–643.
- Rajesh, Munusamy, Kaliyamoorthy, R., & Kirubakaran, R. (2022). Parametric investigation on surface roughness and hole quality of Ti metal hybrid fibers cored laminate (MFL) during abrasive water jet drilling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 4147–4165.
- Rajesh, M., Rajkumar, K., & Annamalai, V. E. (2021). Abrasive water jet machining on Ti metal-interleaved basalt-flax fiber laminate. Materials and Manufacturing Processes, 36, 329–340.
- Demiral, M., Abbassi, F., Saracyakupoglu, T., & Habibi, M. (2022). Damage analysis of a CFRP cross-ply laminate subjected to abrasive water jet cutting. Alexandria Engineering Journal, 61, 7669–7684.
- Schwartzentruber, J., Papini, M., & Spelt, J. K. (2018). Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting. Composites Part A: Applied Science and Manufacturing, 112, 299–314.
- Kumar, D., & Gururaja, S. (2020). Abrasive waterjet machining of Ti/CFRP/Ti laminate and multi-objective optimization of the process parameters using response surface methodology. Journal of Composite Materials, 54, 1741–1759.
- Dhanawade, A., Kumar, P., & Kumar, S. (2020). Experimental study on abrasive water jet machining of carbon epoxy composite. Advances in Materials and Processing Technologies, 6, 40–53.38.
- Pahuja, R., & M., R. (2019). Abrasive water jet machining of Titanium (Ti6Al4V)–CFRP stacks – A semi-analytical modeling approach in the prediction of kerf geometry. Journal of Manufacturing Processes, 39, 327–337.
- Çelik, İ., Yıldız, C., & Şekkeli, M. (2021). Wind power plant layout optimization using particle swarm optimization. Turkish Journal of Engineering, 5, 89–94.
Year 2025,
Volume: 9 Issue: 1, 28 - 36
Gnanasekaran K
,
Rajesh M
,
Hariram V
References
- Etri, H. E., Korkmaz, M. E., Gupta, M. K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. The International Journal of Advanced Manufacturing Technology, 123(9), 2965-2991.
- Costa, R. D. F. S., Sales-Contini, R. C. M., Silva, F. J. G., Sebbe, N., & Jesus, A. M. P. (2023). A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals, 13, 638.
- Krishnakumar, S. (1994). Fiber Metal Laminates — The Synthesis of Metals and Composites. Materials and Manufacturing Processes, 9, 295–354.
- Sherkatghanad, E., Lang, L., Blala, H., Li, L., & Alexandrov, S. (2019). Fiber Metal Laminate Structure, a good replacement for monolithic and composite materials. IOP Conference Series: Materials Science and Engineering, 576, 012034.
- Ali, A., Pan, L., Duan, L., Zheng, Z., & Sapkota, B. (2016). Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications. Composite Structures, 158,199–207
Blala, H., Lang, L., Khan, S., Li, L., Sijia, S., Guelailia, A., Slimane, S. A., & Alexandrov, S. (2023). Forming challenges of small and complex fiber metal laminate parts in aerospace applications—a review. The International Journal of Advanced Manufacturing Technology, 126, 2509–2543.
- Etri, H. El, Korkmaz, M. E., Gupta, M. K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. The International Journal of Advanced Manufacturing Technology, 123, 2965–2991.
- Ding, Z., Wang, H., Luo, J., & Li, N. (2021). A review on forming technologies of fibre metal laminates. International Journal of Lightweight Materials and Manufacture, 4,110–126.
- Dhar Malingam, S., Jumaat, F. A., Ng, L. F., Subramaniam, K., & Ab Ghani, A. F.( 2018). Tensile and impact properties of cost‐effective hybrid fiber metal laminate sandwich structures. Advances in Polymer Technology, 37, 2385–2393.
- Giridharan, D., & Rakham, B. (2018). Experimental Analysis of Fibre Metal Laminates. IOP Conference Series: Materials Science and Engineering, 455: 012037.
- Chen, Y., Wang, Y., & Wang, H. (2020). Research Progress on Interlaminar Failure Behavior of Fiber Metal Laminates. Advances in Polymer Technology, 2020(1), 3097839.
- Serubibi, A., Hazell, P. J., Escobedo, J. P., Wang, H., Oromiehie, E., Prusty, G. B., Phillips, A. W., & St John, N. A. (2023). Fibre-metal laminate structures: High-velocity impact, penetration, and blast loading – A review. Composites Part A: Applied Science and Manufacturing, 173, 107674.
- Kirubakaran, R., Kaliyamoorthy, R., Munusamy, R., & Annamalai, B. (2023). Mechanical and vibration behavior of surface‐modified titanium sheet interleaved with woven basalt/flax fiber metal laminates. Polymer Composites, 44, 8442–8453.
- Ramraji, K., Rajkumar, K., & Sabarinathan, P. (2020). Mechanical and free vibration properties of skin and core designed basalt woven intertwined with flax layered polymeric laminates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234, 4505–4519.
- Şimşek Türker, Y., & Kılınçarslan, Ş. (2024). Experimental and analytical investigation of the effect of layer number and thickness on the bending properties of glulam beams. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27, 141–150.
- Özbek, Ö., Bozkurt, Ö., & Erklig, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4,197–202.
- Ramesh, M., Palanikumar, K., & Reddy, K. H. (2013). Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Composites Part B: Engineering, 48,1–9.
- Karacor, B., & Özcanlı, M. (2021). Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science And Technology, 5, 358–371.
- Yeter, E. (2019). Investigation of Ballistic Impact Response of Aluminum Alloys Hybridized with Kevlar/Epoxy Composites TT - Investigation of Ballistic Impact Response of Aluminum Alloys Hybridized with Kevlar/Epoxy Composites. Politeknik Dergisi, 22, 219–227.
- Naveen, M. R., Kamaraj, L., & Ponnarengan, H. (2024). Adhesion strength and mechanical properties of nanoclay modified hybrid kevlar/jute‐epoxy fiber metal laminate. Polymer Composites.
- Wang, Y., Sun, W., & Cao, L. (2024). Tensile and flexural mechanical attributes of hybrid carbon/basalt fiber metal laminates under various hybridization and stacking sequences. Composites Part A: Applied Science and Manufacturing, 177, 107942.
- Babaytsev, A., Lopatin, S., & Nasonov, F. (2024). Study of dynamic characteristics of hybrid titanium-polymer composite materials. International Journal for Computational Civil and Structural Engineering, 20, 109–115.
- Debnath, K., Sisodia, M., Kumar, A., & Singh, I. 2016. Damage-free hole making in fiber-reinforced composites: an innovative tool design approach. Materials and Manufacturing Processes, 31, 1400–1408.
- Xu, J., Zhou, L., Chen, M., & Ren, F. (2019). Experimental study on mechanical drilling of carbon/epoxy composite-Ti6Al4V stacks. Materials and Manufacturing Processes, 34, 715–725.
- Ishfaq, K., Mufti, N., Ahmed, N., & Pervaiz, S. (2018). Abrasive waterjet cutting of cladded material: kerf taper and MRR analysis. Materials and Manufacturing Processes, 34, 1–10.
- Xu, J., li, C., Chen, M., & Ren, F. (2019). A comparison between vibration assisted and conventional drilling of CFRP/Ti6Al4V stacks. Materials and Manufacturing Processes, 34,1182–1193.
- Karthikeyan, M., Pandian, S. M. V., & Vijayakumar, R. (2023). Investigation on Metal Hybrid Fibres Laminate (MHFL) in hybrid machining. Journal of Manufacturing Processes, 101, 835–853.
- Rao, S., Sethi, A., Das, A. K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A. R., & Mandal, A. (2017). Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Materials and Manufacturing Processes, 32, 1612–1621.
- Şimşek, T., Baris, M., Ozcan, S., & Akkurt, A. (2019). Investigation of machinability properties of laser treated S355JR carbon steel with ZRB2 nanoparticles. Turkish Journal of Engineering, 3, 51–59
- Kechagias, J., Petropoulos, G., & Vaxevanidis, N. (2012). Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. The International Journal of Advanced Manufacturing Technology, 62, 635–643.
- Rajesh, Munusamy, Kaliyamoorthy, R., & Kirubakaran, R. (2022). Parametric investigation on surface roughness and hole quality of Ti metal hybrid fibers cored laminate (MFL) during abrasive water jet drilling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 4147–4165.
- Rajesh, M., Rajkumar, K., & Annamalai, V. E. (2021). Abrasive water jet machining on Ti metal-interleaved basalt-flax fiber laminate. Materials and Manufacturing Processes, 36, 329–340.
- Demiral, M., Abbassi, F., Saracyakupoglu, T., & Habibi, M. (2022). Damage analysis of a CFRP cross-ply laminate subjected to abrasive water jet cutting. Alexandria Engineering Journal, 61, 7669–7684.
- Schwartzentruber, J., Papini, M., & Spelt, J. K. (2018). Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting. Composites Part A: Applied Science and Manufacturing, 112, 299–314.
- Kumar, D., & Gururaja, S. (2020). Abrasive waterjet machining of Ti/CFRP/Ti laminate and multi-objective optimization of the process parameters using response surface methodology. Journal of Composite Materials, 54, 1741–1759.
- Dhanawade, A., Kumar, P., & Kumar, S. (2020). Experimental study on abrasive water jet machining of carbon epoxy composite. Advances in Materials and Processing Technologies, 6, 40–53.38.
- Pahuja, R., & M., R. (2019). Abrasive water jet machining of Titanium (Ti6Al4V)–CFRP stacks – A semi-analytical modeling approach in the prediction of kerf geometry. Journal of Manufacturing Processes, 39, 327–337.
- Çelik, İ., Yıldız, C., & Şekkeli, M. (2021). Wind power plant layout optimization using particle swarm optimization. Turkish Journal of Engineering, 5, 89–94.