Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 95 - 102, 20.01.2025
https://doi.org/10.31127/tuje.1520661

Abstract

References

  • Yoǧurtçu, H. (2019). Optimization of microwave apple drying using response surface method. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1365–1376. https://doi.org/10.17341/gazimmfd.460532
  • Zhou, X., Zhang, S., Tang, Z., Tang, J., & Takhar, P. S. (2022). Microwave frying and post-frying of French fries. Food Research International, 159(May), 111663. https://doi.org/10.1016/j.foodres.2022.111663
  • Shen, L., Gao, M., Feng, S., Ma, W., Zhang, Y., Liu, C., Liu, C., & Zheng, X. (2022). Analysis of heating uniformity considering microwave transmission in stacked bulk of granular materials on a turntable in microwave ovens. Journal of Food Engineering, 319(600),110903. https://doi.org/10.1016/j.jfoodeng.2021.110903
  • Du, M., Zhang, Z., Huang, J., Zhu, H., & Yang, Y. (2023). Study of multi-frequency heating based on the nonlinear response characteristics of magnetron to improve uniformity. Journal of Microwave Power and Electromagnetic Energy, 57(1), 71–88. https://doi.org/10.1080/08327823.2023.2166003
  • Recepoğlu, Y. K., Gümüşbulut, G., & Özşen, A. Y. (2023). A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering, 7(2), 116–124. https://doi.org/10.31127/tuje.1058500
  • Detz, R. J., & Zwaan, B. van der. (2020). Surfing the microwave oven learning curve. Journal of Cleaner Production,271,122278. https://doi.org/10.1016/j.jclepro.2020.122278
  • Liu, Y., Guo, N., Yin, P., & Zhang, C. (2019). Facile growth of carbon nanotubes using microwave ovens: The emerging application of highly efficient domestic plasma reactors. In Nanoscale Advances, 1(12),4546–4559. https://doi.org/10.1039/c9na00538b
  • Liew, K. M., & Yuan, J. (2011). High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube. Nanotechnology, 22(8), 085701. https://doi.org/10.1088/0957-484/22/8/085701
  • Fazzolari, F. A. (2018). Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates. Composite Structures, 196(April), 199–214. https://doi.org/10.1016/j.compstruct.2018.04.026
  • Asnawi, M., Azhari, S., Hamidon, M. N., Ismail, I., & Helina, I. (2018). Synthesis of Carbon Nanomaterials from Rice Husk via Microwave Oven. Journal of Nanomaterials, 2018(1), 1–5. https://doi.org/10.1155/2018/2898326
  • Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H., & Zhang, X. (2011). Poptube approach for ultrafast carbon nanotube growth. Chemical Communications, 47(35), 9912. https://doi.org/10.1039/c1cc13359d
  • Bajpai, R., & Wagner, H. D. (2015). Fast growth of carbon nanotubes using a microwave oven. Carbon, 82(C),327–336. https://doi.org/10.1016/j.carbon.2014.10.077
  • Barman, B. K., & Nanda, K. K. (2018). Ultrafast-Versatile-Domestic-Microwave-Oven Based Graphene Oxide Reactor for the Synthesis of Highly Efficient Graphene Based Hybrid Electrocatalysts. ACS Sustainable Chemistry and Engineering, 6(3), 4037–4045. https://doi.org/10.1021/acssuschemeng.7b04398
  • Pang, F. (2018). Note: A compact microwave plasma enhanced chemical vapor deposition based on a household microwave oven. Review of Scientific Instruments,89(8),086104. https://doi.org/10.1063/1.5040699
  • Sun, Y., Yang, L., Xia, K., Liu, H., Han, D., Zhang, Y., & Zhang, J. (2018). “Snowing” Graphene using Microwave Ovens. Advanced Materials, 30(40), 1803189. https://doi.org/10.1002/adma.201803189
  • Nadkarni, R. A. (1984). Applicatications of Microwave Oven Samole Dissolution in Anaıysis. 2233–2237.
  • Dadras, S., & Ghavamipour, M. (2018). Properties of YBCO high temperature superconductor synthesized by microwave oven. Materials Research Express, 5(1). https://doi.org/10.1088/2053-1591/aaa5eb
  • Gray, R. J., Jaafar, A. H., Verrelli, E., & Kemp, N. T. (2018). Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin Solid Films, 662, 116–122. https://doi.org/10.1016/j.tsf.2018.07.034
  • Shahiduzzaman, M., Yamada, R., Chikamatsu, T., Ono, T., Tanaka, Y., Uesugi, Y., Karakawa, M., Kuwabara, T., Takahashi, K., Ishijima, T., & Taima, T. (2019). Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet. Thin Solid Films, 674, 58–63. https://doi.org/10.1016/j.tsf.2019.01.053
  • Nirmal Peiris, T. A., Sagu, J. S., Hazim Yusof, Y., & Upul Wijayantha, K. G. (2015). Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting. Thin Solid Films, 590, 293–298. https://doi.org/10.1016/j.tsf.2015.08.008
  • Pérez-Conesa, I., Fayos-Fernández, J., Aguilar Galea, J. A., Monzó-Cabrera, J., & Pérez-Campos, R. (2022). Evaluation of graphite and TiO2 as susceptors for microwave dewaxing in ceramic shell casting processes of artworks. Journal of Microwave Power and Electromagnetic Energy, 56(3), 201–215. https://doi.org/10.1080/08327823.2022.2106730
  • Jie, X., Li, W., Slocombe, D., Gao, Y., Banerjee, I., Gonzalez-Cortes, S., Yao, B., AlMegren, H., Alshihri, S., Dilworth, J., Thomas, J., Xiao, T., & Edwards, P. (2020). Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nature Catalysis, 3(11), 902–912. https://doi.org/10.1038/s41929-020-00518-5
  • Boonthum, D., Chanprateep, S., Ruttanapun, C., & Nisoa, M. (2019). Development of high-temperature multi-magnetron microwave furnace for material processing. Songklanakarin Journal of Science and Technology,41(3),494–500. https://doi.org/10.14456/sjst-psu.2019.69
  • Horikoshi, S. ;, Schiffmann, R. F., Fukushima, J., & Nick, S. (1981). Microwave Chemical and Materials Processing. In The Physics Teacher (Vol. 19, Issue 1). https://doi.org/10.1119/1.2340686
  • Chen, X., Yang, B., Shinohara, N., & Liu, C. (2020). A High-Efficiency Microwave Power Combining System Based on Frequency-Tuning Injection-Locked Magnetrons. IEEE Transactions on Electron Devices,67(10),4447–4452. https://doi.org/10.1109/TED.2020.3013510
  • Kim, J. K., Kim, Y. S., & Jeon, E. S. (2019). Experimental Study on Flat-Glass Heating and Edge-Sealing Using Multiple Microwave Sources. Energies, 12(22),4359. https://doi.org/10.3390/en12224359
  • Zhang, Y., Huang, K., Agrawal, D. K., Slawecki, T., Zhu, H., & Yang, Y. (2017). Microwave Power System Based on a Combination of Two Magnetrons. IEEE Transactions on Electron Devices, 64(10), 4272–4278. https://doi.org/10.1109/TED.2017.2737555
  • Rajpurohit, D. S., & Chhibber, R. (2016). Design Optimization of Two Input Multimode Applicator for Efficient Microwave Heating. International Journal of Advances in Microwave Technology, 1(3), 68–73.
  • Bouzit, A., Chraygane, M., El Ghazal, N., Ferfra, M., & Bassoui, M. (2014). Modeling of New Single-Phase High Voltage Power Supply for Industrial Microwave Generators for N=2 Magnetrons. International Journal of Electrical and Computer Engineering(IJECE),4(2),223–230. https://doi.org/10.11591/ijece.v4i2.5686
  • Bassoui, M., Ferfra, M., Chraygane, M., & Bahani, B. (2014). Optimization under Matlab Simulink code of a three-phase HV power transformer for microwaves generators supplying one magnetron by phase. Proceedings of 2014 Mediterranean Microwave Symposium (MMS2014), 2015-April(February2016),1–6. https://doi.org/10.1109/MMS.2014.7088787
  • Boubker, B., Bouzit, A., Chraygane, M., Ferfra, M., El Ghazal, N., & Belhaiba, A. (2013). Modeling of a New Single-Phase High Voltage Power Supply for Microwave Generators with Three Magnetrons. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 164–170. https://doi.org/10.11591/ijece.v3i2.2238
  • El, N., -, A. B., -, M. C., & -, B. B. (2013). New Simulation Method of New HV Power Supply for Industrial Microwave Generators with N=2 Magnetrons. International Journal of Advanced Computer Science and Applications, 4(12), 55–64. https://doi.org/10.14569/IJACSA.2013.041209
  • Mekonnen, S. A., & Yenikaya, S. (2019). Design optimization using dielectric slab for efficient microwave heating. Turkish Journal Of Electrical Engineering & Computer Sciences, 27(4), 3055–3064. https://doi.org/10.3906/elk-1802-164
  • Yuanyuan, W., Junqing, L., Fengming, Y., Tao, H., Yang, Y., Huacheng, Z., & Zhengming, T. (2021). Study of the high heating efficiency and uniformity by multi-port sweep frequency microwave irradiations. Journal of Microwave Power and Electromagnetic Energy, 55(4), 316–332. https://doi.org/10.1080/08327823.2021.1993044
  • Horikoshi, S., & Serpone, N. (2011). Microwave Frequency Effect(s) in Organic Chemistry. Mini-Reviews in Organic Chemistry, 8(3), 299–305. https://doi.org/10.2174/157019311796197436
  • Kahveci, B., Özil, M., & Menteşe, E. (2015). Mikrodalga Destekli Organik Senteze Giriş. Gazi Kitapevi.
  • Guo, L., Liu, C., Srinivasakannan, C., & Jiyun, G. (2021). Microwave upgradation of Yunnan lignite: dielectric properties, drying pattern and kinetics. Journal of Microwave Power and Electromagnetic Energy,55(3),248–269. https://doi.org/10.1080/08327823.2021.1952834
  • TIGLI, İ. (2014). Mutfak tipi bir mikrodalga fırının mikroişlemci ile kontrolü. 16(2), 87–99.
  • Li, Z. (2004). Design of a Microcontroller-based , Power Control System for Microwave Drying. December, 90.
  • Geyikoğlu, M. D., Koç Polat, H., Kaburcuk, F., & Çavuşoğlu, B. (2020). SAR analysis of tri-band antennas for a 5G eyewear device. International Journal of Microwave and Wireless Technologies, 12(8),754–761.
  • Özyalçin, M. O., Akleman, F., & Sevgi, L. (2002). Sar simulations in wireless communication and safety discussions in the society. Turkish Journal of Electrical Engineering and Computer Sciences, 10(2), 411–426.
  • Popov, V., & Shevchenko, A. (2019). Analysis of standards and norms of electromagnetic irradiation levels in wireless communication systems on railway transport. Procedia Computer Science, 149, 239–245. https://doi.org/10.1016/j.procs.2019.01.129
  • ICNIRP. (2020). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Physics,118(5),483–524. https://doi.org/10.1097/HP.0000000000001210
  • Yi, Z., Qiu, W., Jiao, Y., Row, K. H., Cheng, Y. dong, & Jin, Y. (2021). Calculation of electric field and temperature distribution within a microwave oven with realistic geometric features geometric features using numeric simulations. Journal of Microwave Power and Electromagnetic Energy, 55(1), 3–27. https://doi.org/10.1080/08327823.2020.1838048

Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications

Year 2025, Volume: 9 Issue: 1, 95 - 102, 20.01.2025
https://doi.org/10.31127/tuje.1520661

Abstract

This article examines the design, manufacture, and performance of multi-magnetron ovens capable of reaching high temperatures. Firstly, an appropriate waveguide was simulated, and the production process was completed. Then, the proposed designs for multi-magnetron ovens were simulated, and appropriate dimensions were suggested. It was reported that the average power density (PD) value of the produced multi-magnetron oven was 0.37 mW/cm², which indicates its performance and efficiency. This value was found to be compliant with standards and safe for human use. The main objective of our study was to demonstrate that waveguides can reach high temperatures at the center of the oven without affecting each other. In this context, it was observed that the temperature created by magnetrons operating in single, double, triple, and quadruple modes gradually increased at the center of the oven. The simulation results supporting this showed that the S21 parameter was -177 dB. The design proposed and applied in our study was efficient, easy to produce, safe for human use, low cost, and usable in commercial and academic studies for reaching high temperatures. Overall, the multi-magnetron oven design proved to be a successful and practical solution for applications requiring high temperatures, showcasing its potential for both industrial and research purposes. The findings of this study contribute valuable insights into the development of advanced heating technologies, demonstrating significant improvements in efficiency and safety for high-temperature applications.

References

  • Yoǧurtçu, H. (2019). Optimization of microwave apple drying using response surface method. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1365–1376. https://doi.org/10.17341/gazimmfd.460532
  • Zhou, X., Zhang, S., Tang, Z., Tang, J., & Takhar, P. S. (2022). Microwave frying and post-frying of French fries. Food Research International, 159(May), 111663. https://doi.org/10.1016/j.foodres.2022.111663
  • Shen, L., Gao, M., Feng, S., Ma, W., Zhang, Y., Liu, C., Liu, C., & Zheng, X. (2022). Analysis of heating uniformity considering microwave transmission in stacked bulk of granular materials on a turntable in microwave ovens. Journal of Food Engineering, 319(600),110903. https://doi.org/10.1016/j.jfoodeng.2021.110903
  • Du, M., Zhang, Z., Huang, J., Zhu, H., & Yang, Y. (2023). Study of multi-frequency heating based on the nonlinear response characteristics of magnetron to improve uniformity. Journal of Microwave Power and Electromagnetic Energy, 57(1), 71–88. https://doi.org/10.1080/08327823.2023.2166003
  • Recepoğlu, Y. K., Gümüşbulut, G., & Özşen, A. Y. (2023). A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering, 7(2), 116–124. https://doi.org/10.31127/tuje.1058500
  • Detz, R. J., & Zwaan, B. van der. (2020). Surfing the microwave oven learning curve. Journal of Cleaner Production,271,122278. https://doi.org/10.1016/j.jclepro.2020.122278
  • Liu, Y., Guo, N., Yin, P., & Zhang, C. (2019). Facile growth of carbon nanotubes using microwave ovens: The emerging application of highly efficient domestic plasma reactors. In Nanoscale Advances, 1(12),4546–4559. https://doi.org/10.1039/c9na00538b
  • Liew, K. M., & Yuan, J. (2011). High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube. Nanotechnology, 22(8), 085701. https://doi.org/10.1088/0957-484/22/8/085701
  • Fazzolari, F. A. (2018). Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates. Composite Structures, 196(April), 199–214. https://doi.org/10.1016/j.compstruct.2018.04.026
  • Asnawi, M., Azhari, S., Hamidon, M. N., Ismail, I., & Helina, I. (2018). Synthesis of Carbon Nanomaterials from Rice Husk via Microwave Oven. Journal of Nanomaterials, 2018(1), 1–5. https://doi.org/10.1155/2018/2898326
  • Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H., & Zhang, X. (2011). Poptube approach for ultrafast carbon nanotube growth. Chemical Communications, 47(35), 9912. https://doi.org/10.1039/c1cc13359d
  • Bajpai, R., & Wagner, H. D. (2015). Fast growth of carbon nanotubes using a microwave oven. Carbon, 82(C),327–336. https://doi.org/10.1016/j.carbon.2014.10.077
  • Barman, B. K., & Nanda, K. K. (2018). Ultrafast-Versatile-Domestic-Microwave-Oven Based Graphene Oxide Reactor for the Synthesis of Highly Efficient Graphene Based Hybrid Electrocatalysts. ACS Sustainable Chemistry and Engineering, 6(3), 4037–4045. https://doi.org/10.1021/acssuschemeng.7b04398
  • Pang, F. (2018). Note: A compact microwave plasma enhanced chemical vapor deposition based on a household microwave oven. Review of Scientific Instruments,89(8),086104. https://doi.org/10.1063/1.5040699
  • Sun, Y., Yang, L., Xia, K., Liu, H., Han, D., Zhang, Y., & Zhang, J. (2018). “Snowing” Graphene using Microwave Ovens. Advanced Materials, 30(40), 1803189. https://doi.org/10.1002/adma.201803189
  • Nadkarni, R. A. (1984). Applicatications of Microwave Oven Samole Dissolution in Anaıysis. 2233–2237.
  • Dadras, S., & Ghavamipour, M. (2018). Properties of YBCO high temperature superconductor synthesized by microwave oven. Materials Research Express, 5(1). https://doi.org/10.1088/2053-1591/aaa5eb
  • Gray, R. J., Jaafar, A. H., Verrelli, E., & Kemp, N. T. (2018). Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin Solid Films, 662, 116–122. https://doi.org/10.1016/j.tsf.2018.07.034
  • Shahiduzzaman, M., Yamada, R., Chikamatsu, T., Ono, T., Tanaka, Y., Uesugi, Y., Karakawa, M., Kuwabara, T., Takahashi, K., Ishijima, T., & Taima, T. (2019). Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet. Thin Solid Films, 674, 58–63. https://doi.org/10.1016/j.tsf.2019.01.053
  • Nirmal Peiris, T. A., Sagu, J. S., Hazim Yusof, Y., & Upul Wijayantha, K. G. (2015). Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting. Thin Solid Films, 590, 293–298. https://doi.org/10.1016/j.tsf.2015.08.008
  • Pérez-Conesa, I., Fayos-Fernández, J., Aguilar Galea, J. A., Monzó-Cabrera, J., & Pérez-Campos, R. (2022). Evaluation of graphite and TiO2 as susceptors for microwave dewaxing in ceramic shell casting processes of artworks. Journal of Microwave Power and Electromagnetic Energy, 56(3), 201–215. https://doi.org/10.1080/08327823.2022.2106730
  • Jie, X., Li, W., Slocombe, D., Gao, Y., Banerjee, I., Gonzalez-Cortes, S., Yao, B., AlMegren, H., Alshihri, S., Dilworth, J., Thomas, J., Xiao, T., & Edwards, P. (2020). Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nature Catalysis, 3(11), 902–912. https://doi.org/10.1038/s41929-020-00518-5
  • Boonthum, D., Chanprateep, S., Ruttanapun, C., & Nisoa, M. (2019). Development of high-temperature multi-magnetron microwave furnace for material processing. Songklanakarin Journal of Science and Technology,41(3),494–500. https://doi.org/10.14456/sjst-psu.2019.69
  • Horikoshi, S. ;, Schiffmann, R. F., Fukushima, J., & Nick, S. (1981). Microwave Chemical and Materials Processing. In The Physics Teacher (Vol. 19, Issue 1). https://doi.org/10.1119/1.2340686
  • Chen, X., Yang, B., Shinohara, N., & Liu, C. (2020). A High-Efficiency Microwave Power Combining System Based on Frequency-Tuning Injection-Locked Magnetrons. IEEE Transactions on Electron Devices,67(10),4447–4452. https://doi.org/10.1109/TED.2020.3013510
  • Kim, J. K., Kim, Y. S., & Jeon, E. S. (2019). Experimental Study on Flat-Glass Heating and Edge-Sealing Using Multiple Microwave Sources. Energies, 12(22),4359. https://doi.org/10.3390/en12224359
  • Zhang, Y., Huang, K., Agrawal, D. K., Slawecki, T., Zhu, H., & Yang, Y. (2017). Microwave Power System Based on a Combination of Two Magnetrons. IEEE Transactions on Electron Devices, 64(10), 4272–4278. https://doi.org/10.1109/TED.2017.2737555
  • Rajpurohit, D. S., & Chhibber, R. (2016). Design Optimization of Two Input Multimode Applicator for Efficient Microwave Heating. International Journal of Advances in Microwave Technology, 1(3), 68–73.
  • Bouzit, A., Chraygane, M., El Ghazal, N., Ferfra, M., & Bassoui, M. (2014). Modeling of New Single-Phase High Voltage Power Supply for Industrial Microwave Generators for N=2 Magnetrons. International Journal of Electrical and Computer Engineering(IJECE),4(2),223–230. https://doi.org/10.11591/ijece.v4i2.5686
  • Bassoui, M., Ferfra, M., Chraygane, M., & Bahani, B. (2014). Optimization under Matlab Simulink code of a three-phase HV power transformer for microwaves generators supplying one magnetron by phase. Proceedings of 2014 Mediterranean Microwave Symposium (MMS2014), 2015-April(February2016),1–6. https://doi.org/10.1109/MMS.2014.7088787
  • Boubker, B., Bouzit, A., Chraygane, M., Ferfra, M., El Ghazal, N., & Belhaiba, A. (2013). Modeling of a New Single-Phase High Voltage Power Supply for Microwave Generators with Three Magnetrons. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 164–170. https://doi.org/10.11591/ijece.v3i2.2238
  • El, N., -, A. B., -, M. C., & -, B. B. (2013). New Simulation Method of New HV Power Supply for Industrial Microwave Generators with N=2 Magnetrons. International Journal of Advanced Computer Science and Applications, 4(12), 55–64. https://doi.org/10.14569/IJACSA.2013.041209
  • Mekonnen, S. A., & Yenikaya, S. (2019). Design optimization using dielectric slab for efficient microwave heating. Turkish Journal Of Electrical Engineering & Computer Sciences, 27(4), 3055–3064. https://doi.org/10.3906/elk-1802-164
  • Yuanyuan, W., Junqing, L., Fengming, Y., Tao, H., Yang, Y., Huacheng, Z., & Zhengming, T. (2021). Study of the high heating efficiency and uniformity by multi-port sweep frequency microwave irradiations. Journal of Microwave Power and Electromagnetic Energy, 55(4), 316–332. https://doi.org/10.1080/08327823.2021.1993044
  • Horikoshi, S., & Serpone, N. (2011). Microwave Frequency Effect(s) in Organic Chemistry. Mini-Reviews in Organic Chemistry, 8(3), 299–305. https://doi.org/10.2174/157019311796197436
  • Kahveci, B., Özil, M., & Menteşe, E. (2015). Mikrodalga Destekli Organik Senteze Giriş. Gazi Kitapevi.
  • Guo, L., Liu, C., Srinivasakannan, C., & Jiyun, G. (2021). Microwave upgradation of Yunnan lignite: dielectric properties, drying pattern and kinetics. Journal of Microwave Power and Electromagnetic Energy,55(3),248–269. https://doi.org/10.1080/08327823.2021.1952834
  • TIGLI, İ. (2014). Mutfak tipi bir mikrodalga fırının mikroişlemci ile kontrolü. 16(2), 87–99.
  • Li, Z. (2004). Design of a Microcontroller-based , Power Control System for Microwave Drying. December, 90.
  • Geyikoğlu, M. D., Koç Polat, H., Kaburcuk, F., & Çavuşoğlu, B. (2020). SAR analysis of tri-band antennas for a 5G eyewear device. International Journal of Microwave and Wireless Technologies, 12(8),754–761.
  • Özyalçin, M. O., Akleman, F., & Sevgi, L. (2002). Sar simulations in wireless communication and safety discussions in the society. Turkish Journal of Electrical Engineering and Computer Sciences, 10(2), 411–426.
  • Popov, V., & Shevchenko, A. (2019). Analysis of standards and norms of electromagnetic irradiation levels in wireless communication systems on railway transport. Procedia Computer Science, 149, 239–245. https://doi.org/10.1016/j.procs.2019.01.129
  • ICNIRP. (2020). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Physics,118(5),483–524. https://doi.org/10.1097/HP.0000000000001210
  • Yi, Z., Qiu, W., Jiao, Y., Row, K. H., Cheng, Y. dong, & Jin, Y. (2021). Calculation of electric field and temperature distribution within a microwave oven with realistic geometric features geometric features using numeric simulations. Journal of Microwave Power and Electromagnetic Energy, 55(1), 3–27. https://doi.org/10.1080/08327823.2020.1838048
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics, Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Articles
Authors

Ahmet Özmen 0000-0002-3631-4883

Aykut Coşkun 0000-0002-7240-6865

Mehmet Ertugrul 0000-0003-1921-7704

Early Pub Date January 17, 2025
Publication Date January 20, 2025
Submission Date July 22, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Özmen, A., Coşkun, A., & Ertugrul, M. (2025). Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications. Turkish Journal of Engineering, 9(1), 95-102. https://doi.org/10.31127/tuje.1520661
AMA Özmen A, Coşkun A, Ertugrul M. Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications. TUJE. January 2025;9(1):95-102. doi:10.31127/tuje.1520661
Chicago Özmen, Ahmet, Aykut Coşkun, and Mehmet Ertugrul. “Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications”. Turkish Journal of Engineering 9, no. 1 (January 2025): 95-102. https://doi.org/10.31127/tuje.1520661.
EndNote Özmen A, Coşkun A, Ertugrul M (January 1, 2025) Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications. Turkish Journal of Engineering 9 1 95–102.
IEEE A. Özmen, A. Coşkun, and M. Ertugrul, “Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications”, TUJE, vol. 9, no. 1, pp. 95–102, 2025, doi: 10.31127/tuje.1520661.
ISNAD Özmen, Ahmet et al. “Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications”. Turkish Journal of Engineering 9/1 (January 2025), 95-102. https://doi.org/10.31127/tuje.1520661.
JAMA Özmen A, Coşkun A, Ertugrul M. Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications. TUJE. 2025;9:95–102.
MLA Özmen, Ahmet et al. “Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications”. Turkish Journal of Engineering, vol. 9, no. 1, 2025, pp. 95-102, doi:10.31127/tuje.1520661.
Vancouver Özmen A, Coşkun A, Ertugrul M. Design and Fabrication of Multi-Magnetron Microwave Oven for High-Temperature Applications. TUJE. 2025;9(1):95-102.
Flag Counter