Research Article
BibTex RIS Cite

Using artificial neural networks for predicting flood events in Artvin, Türkiye

Year 2025, Volume: 9 Issue: 2, 189 - 201
https://doi.org/10.31127/tuje.1530593

Abstract

Flood risks in Artvin, Turkey, have become a critical concern due to the long-term economic, social, cultural, and environmental damages caused by flood-related disasters. Given this, it is essential to utilize reliable methods for flood prediction. Artificial Neural Networks (ANNs), adept at reacting to rapid changes in rainfall, are employed as a machine learning approach to provide valuable flood information for urban areas. This study aims to develop an accurate and timely flood prediction model for Artvin using daily average rainfall data from 58 weather stations between 2009 and 2016. Flow values for various locations in Artvin (Ardanuç, Arhavi, Artvin, Borçka, Hopa, Murgul, Şavşat, Yusufeli) are calculated using the rational method. ANNs were trained with daily rainfall data and consecutive rainfall inputs from 1 to 7 hours to predict flow values. The model’s performance, with 75% of the data used for training and 25% for validation, showed an error ratio of 0.225 and high prediction accuracy for flow values, exceeding 20 m³/h in most locations except Hopa. The R² results for 1–7 hours indicated high performance (0.643-0.725), suggesting effective warning times of 3–5 hours for Artvin. The study also highlights the increasing necessity for flood management strategies in the Eastern Black Sea Region, particularly Artvin, which has experienced severe flash floods and significant flooding events since 2017. The region’s frequent and intense rainfall, exacerbated by global climate change, underscores the urgent need for robust monitoring, early warning systems, and comprehensive flood mitigation plans to address drainage, land management, and safeguard infrastructure. Effective warning systems that provide real-time estimates of rainfall and flow are crucial for timely preventive measures.

Ethical Statement

Yok

Supporting Institution

Ankara University Research Council

Project Number

#17B0649001

Thanks

Yok

References

  • NatCatSERVICE. (2016). [Online] Available from: https://www.munichre.com/ [Accessed 20 February 2019]
  • EM-DATi. (2016). The international disasters database [Online] Available from: http://www.emdat.be/ [Accessed 20 February 2019]
  • Mahmood, S., & Rani, R. (2022). People-centric geo-spatial exposure and damage assessment of 2014 flood in lower Chenab Basin, upper Indus Plain in Pakistan. Natural Hazards, 111(3), 3053–3069. https://doi.org/10.1007/s11069-021-05167-w
  • Manizabayo, P., Ngwijabagabo, H., Nzayisenga, I., Nzamwita, S., Amani, L., Uwitonze, E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case studyof Mpazi sub-catchment in the city of Kigali. Advance GIS, 4(1), 31–41. e-ISSN:2822-7026
  • Campolo, M., Soldati, A., & Andreussi, P. (2003). Artificial neural network approach to flood forecasting in River Arno. Hydrological Sciences Journal, 48(3), 381–398. https://doi.org/10.1623/hysj.48.3.381.45286
  • Ashley, S. T., & Ashley, W. S. (2008). Flood fatalities in the United States. American Meteorological Society, 47(3), 805–818. http://doi.org/10.1175/2007JAMC1611.1
  • EsiefarienrheBukohwo, M., & OfikwuEne, P. (2018). Flood prediction in Nigeria using artificial neural network. American Journal of Engineering Research (AJER), 7(9), 15–21. e-ISSN: 2320-0847
  • Gürer, İ., & Uçar, İ. (2021). The inventory of flood disasters in Turkey. 5th International Environmental Conference “Impact of Climate Change, Water and Energy on Sustainable Environmental Resources Management” (CWESM-2021), Krenia North Cyprus.
  • Tortumlu, M., & Altuncı, Y. A. (2024). Analysis of flood disasters in Türkiye and their effects on health. Anatolian Journal of Emergency Medicine, 7(2), 74–80. https://doi.org/10.54996/anatolianjem.1376324
  • Boé, J., Somot, S., Corre, L., & Nabat, P. (2020). Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Climate Dynamics, 54(5–6), 2981–3002. http://doi.org/10.1007/s00382-020-05153-1
  • Borga, M., Gaume, E., Creutin, J. D., & Marchi, L. (2008). Surveying flash flood response: gauging the ungauged extremes. Hydrological Processes, 22(18), 3883–3885. https://doi.org/10.1002/hyp.7111
  • Guéro, P. (2006). Rainfall analysis and flood hydrograph determination in the Munster Blackwater Catchment. (A Thesis of Degree of Master). Department of Civil and Environmental Engineering, University College Cork.
  • Sun, D., Zhang, D., & Cheng, X. (2012). Framework of national non-structural measures for flash flood disaster prevention in China. Water, 4(1), 272–282. https://doi.org/10.3390/w4010272
  • Yang, T. H., Yang, S. C., Ho, J. Y., Lin, G. F., Hwang, G. D., & Lee, C. S. (2015). Flash flood warnings using the ensemble rainfall forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons. Journal of Hydrology, 520, 367–378. http://dx.doi.org/10.1016/j.jhydrol.2014.11.028
  • Carpenter, T. M., Sperfslage, J. A., Geogakakos, K. P., Sweeney, T., & Fread, D. L. (1999). National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. Journal of Hydrology, 224, 21–44. https://doi.org/10.1016/S0022-1694(99)00115-8
  • Prasantha-Hapuarachchi, H. A., & Wang, Q. J. (2008). A review of methods and systems available for flash flood forecasting. Report for the Bureau of Meteorology, Australia. http://doi.org/10.4225/08/58542bbf33ce7
  • Kamali, M. A., & Ma’ady, M. N. P. (2024). IoT-based flood disaster early detection system using hybrid fuzzy logic and neural networks. Telecommunication Computing Electronics and Control, 22(4), 976–984. http://doi.org/10.12928/TELKOMNIKA.v22i4.25868
  • Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Bloschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., & Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1–2), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028
  • Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2), 118–133. https://doi.org/10.1016/j.jhydrol.2010.07.017
  • Ahmad, M., Al Mehedi, M. A., Yazdan, M. M. S., & Kumar, R. (2022). Development of machine learning flood model using artificial aeural network (ANN) at Var River. Liquids, 2, 147–160. https://doi.org/10.3390/liquids2030010
  • Saikh, N. I., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Research, 3, 420–436. https://doi.org/10.1016/j.nhres.2023.05.004
  • Sharma, S., & Kumari, S. (2024). Comparison of machine learning models for flood forecasting in the Mahanadi River Basin, India. Journal of Water and Climate Change, 15(4), 1629–1652. http://doi.org/10.2166/wcc.2024.517
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2023). Modeling of annual maximum flows with geographic data components and artificial neural networks. International Journal of Engineering and Geosciences, 8(2), 200–211. http://doi.org/10.26833/ijeg.1125412
  • Byaruhanga, N., Kibirige, D., Gokool, S., & Mkhonta, G. (2024). Evolution of flood prediction and forecasting models for flood early warning systems: A scoping review. Water, 16(13), 1763, 1–29. https://doi.org/10.3390/w16131763
  • Varoonchotikul, P. (2003). Flood forecasting using artificial neural networks. CRC Press. ISBN 9789058096319
  • Campolo, M., Soldati, A., & Andreussi, P. (1999). Forecasting river flow rate during low-flow periods using neural networks. Water Resources Research, 35(11), 3547–3552. http://doi.org/10.1029/1999WR900205
  • Artigue, G., Johannet, A., Borrell, V., & Pistre, S. (2012). Flash flood forecasting in poorly gauged basins using neural networks: Case study of the Gardon de Mialet Basin (Southern France). Natural Hazards and Earth System Sciences, 12(11), 3307–3324. https://doi.org/10.5194/nhess-12-3307-2012
  • Cools, J., Vanderkimpen, P., El Afandi, G., Abdelkhalek, A., Fockedey, S., El Sammany, M., Abdallah, G., El Bihery, M., Bauwens, W., & Huygens, M. (2012). An early warning system for flash floods in hyper-arid Egypt. Natural Hazards and Earth System Sciences, 12(2), 443–457. https://doi.org/10.5194/nhess-12-443-2012
  • Raja, N. B., & Aydin, O. (2017). New approaches to flash flood forecasting in the Mediterranean Region. Lambert Academic Publishing, Saarbrucken, Germany. ISBN-10:3330321342
  • Lamsal, R., & Vijay Kumar, T. V. (2020). Artificial Intelligence and Early Warning Systems. In: Lamsal, R., & Vijay Kumar, T. V. (Ed). AI and Robotics in Disaster Studies. Palgrave Macmillan, Singapore. http://doi.org/10.1007/978-981-15-4291-6_2
  • Stephens, E., & Cloke, H. (2014). Improving flood forecasts for better flood preparedness in the UK (and beyond). The Geographical Journal, 180(4), 310–316. https://www.jstor.org/stable/43870924
  • Aydin, O., & Raja, N. B. (2020). Spatial-temporal analysis of precipitation characteristics in Artvin, Turkey. Theoretical and Applied Climatology, 142(5), 729–741. http://doi.org/10.1007/s00704-020-03346-6
  • Zeybekoglu, U., & Keskin, A. U. (2020). Detrended fluctuation analyses of rainfall intensities: A case study. International Journal of Global Warming, 21(2), 141–154. http://doi.org/10.1504/IJGW.2020.108175
  • Özalp Yavuz, A., Akıncı, H., & Temuçin, S. (2013). Artvin ili arazisinin topografik ve bazı fiziksel özelliklerinin tespiti ve bu özelliklerin arazi örtüsü ile ilişkisinin incelenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 14(2), 292–309. ISSN:2146-1880
  • Ketin, İ. (1949). Artvin bölgesinin jeolojik etüdü hakkında memuar. Ankara: MTA Enstitü Yayınları.
  • Ketin, İ. (1954). Artvin bölgesinin jeolojik etüdü hakkında memuar. Ankara: MTA Rapor.
  • Gattinger, T. E., Erentöz, C., İhsan, K. (1962). Türkiye jeoloji haritası Trabzon-1.500.000 ölçekli-explonatory text of geological map of Turkey. Modern Tetkik ve Arama Enstitüsü Yayınları, Ankara.
  • Köse, N., & Güner, H. T. (2012). The effect of temperature and precipitation on the intra-annual radial growth of Fagus orientalis Lipsky in Artvin, Turkey. Journal of Agriculture and Forestry, 36(4), 501–509. http://doi.org/10.3906/tar-1109-4
  • Baltaci, H. (2017). Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015. Natural Hazards and Earth System Sciences, 17(7), 1221–1230. https://doi.org/10.5194/nhess-17-1221
  • Turgut, H., & Turgut, B. (2022). The effects of landforms and climate on NDVI in Artvin, Turkey. Eco Mont-Journal on Protected Mountain Areas Research, 14(2), 24–36. http://doi.org/10.1553/eco.mont-14-2s24
  • Pebesma, E. J., & Wesseling, C. G. (1998). Gstat, a program for geostatistical modelling, prediction and simulation. Computers&Geosciences, 24(1), 17–31. https://doi.org/10.1016/S0098-3004(97)00082-4
  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computer&Geosciences, 30, 683–691. http://doi.org/10.1016/j.cageo.2004.03.012
  • Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R (use R!). 1. Edition, Springer, London. http://doi.org/10.1007/978-0-387-78171-6
  • Thompson, D. (2006). The rational method. Engineering, Environmental Science, http://doi.org/10.1007/978-3-642-41714-6_180527
  • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling Software, 25(8), 891–909. https://doi.org/10.1016/j.envsoft.2010.02.003
  • Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. In: Suzuki, K. (Ed). Artificial Neural Networks-Methodological Advances and Biomedical Applications. InTech., Croatia. http://doi.org/10.5772/15751
  • Chaudhari, R. P., Thorat, S. R., Mehta, D. J., Waikhom, S. I., Yadav, V. G., & Kumar, V. (2024). Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 11(5), 741–758. http://doi.org/10.3934/environsci.2024037
  • Mangukiya, N. K., Mehta, D. J., & Jariwala, R. (2022). Flood frequency analysis and inundation mapping for lower Narmada basin, India. Water Practice & Technology, 17(2), 612–622. http://doi.org/10.2166/wpt.2022.009
  • Patel, S., Gohil, M., Pathan, F., Mehta, D., & Waikhom, S. (2024). Assessment of flood risk and its mapping in Navsari District, Gujarat. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(2), 1021–1028. https://doi.org/10.1007/s40996-023-01225-4
  • Mehta, D. J., Eslamian, S., & Prajapati, K. (2022). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: A case study of Navsari Region. Modeling Earth Systems and Environment, 8(2), 2675–2685. https://doi.org/10.1007/s40808-021-01259-5
  • Chang, H., & Franczyk, J. J. (2008). Climate change, land‐use change, and floods: Toward an integrated assessment. Geography Compass, 2(5), 1549–1579. http://doi.org/10.1111/j.1749-8198.2008.00136.x
  • Andersen, T. K., & Marshall Shepherd, J. (2013). Floods in a changing climate. Geography Compass, 7(2). http://doi.org/10.1111/gec3.12025
  • Llasat, M. C. (2021). Floods evolution in the Mediterranean region in a context of climate and environmental change. Geographical Research Letters, 47(1), 13–32. https://doi.org/10.18172/cig.4897
  • Blöschl, G. (2022). Three hypotheses on changing river flood hazards. Hydrology and Earth System Sciences, 26(19), 5015–5033. http://doi.org/10.5194/hess-26-5015-2022
  • Huang, X., Yin, J., Slater, L. J., & Liu, P. (2024). Global projection of flood risk with a bivariate framework under 1.5–3.0°C warming levels. Earth's Future, 12(4), 1–19. http://doi.org/10.1029/2023EF004312
  • Baudhanwala, D., Mehta, D., Zoysa, S., & Rathnayake, U. (2024). Rainfall intensity-duration-frequency relationships: a robust foundation for urban decision-making and flood management: A case study. Journal of Environmental Informatics Letters, 11(2), 101–108. http://doi.org/10.3808/jeil.202400131
  • Kömüşçü, A. Ü., Erkan, A., & Çelik, S. (1998). Analysis of meteorological and terrain features leading to the ̇Izmir Flash Flood, 3–4 November 1995. Natural Hazards, 18, 1–25. http://doi.org/10.1023/A:1008078920113
  • Kotroni, V., Lagouvardos, E., Defer, S., Dietrich, F., Porcù, C., Medaglia, C. M., & Demirtas, M. (2006). The Antalya 5 December 2002 storm: Observations and model analysis. Journal of Applied Meteorology Climatology, 45, 576–590. https://doi.org/10.1175/JAM2347.1
  • Kömüşçü, A. Ü., & Çelik, S. (2013). Analysis of the Marmara flood in Turkey, 7–10 September 2009: An assessment from hydrometeorological perspective. Natural Hazards, 66(2), 781–808. http://doi.org/10.1007/s11069-012-0521-x
  • Baltacı, H. (2018). 18 Temmuz 2017 tarihinde İstanbul’da meydana gelen sel olayının meteorolojik analizi. Marmara Fen Bilimleri Dergisi, 30(1), 55–60. https://doi.org/10.7240/marufbd.397544
  • Özcan, E. (2006). Sel olayı ve Türkiye. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 26(1), 35-50.
  • Akinci, H. (2022). Assessment of rainfall-induced landslide susceptibility in Artvin, Turkey using machine learning techniques. Journal of African Earth Sciences, 191, 1–17. http://doi.org/10.1016/j.jafrearsci.2022.104535
  • Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V., & Azamathulla, H. M. (2023). Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling. Results in Engineering, 20, 101571, 1–13. https://doi.org/10.1016/j.rineng.2023.101571
  • Kantharia, V., Mehta, D., Kumar, V., Shaikh, M. P., & Jha, S. (2024). Rainfall–runoff modeling using an adaptive neuro-fuzzy inference system considering soil moisture for the Damanganga Basin. Journal of Water and Climate Change, 15(5), 2518–2531. https://doi.org/10.2166/wcc.2024.143
  • Akinci, H., Zeybek, M. (2021). Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Natural Hazards, 108, 1515–1543. https://doi.org/10.1007/s11069-021-04743-4
  • Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences, 43(1), 47–66. http://doi.org/10.1080/02626669809492102
  • Kalteh, A. M. (2007). Rainfall-runoff modelling using artificial neural networks (ANNs). (Thesis). Department of Water Resources Engineering, Lund Institute of Technology, Lund University, Sweden.
  • Nkoana, R. (2011). Artificial neural network modelling of flood prediction and early warning. [Doctoral Thesis (compilation), Division of Water Resources Engineering]. Department of Water Resources Engineering, Lund Institute of Technology, Lund University.
  • Elsafi, S. H. (2014). Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Engineering Journal, 53(3), 655–662. https://doi.org/10.1016/j.aej.2014.06.010
  • Gunduz, F., & Zeybekoglu, U. (2024). Analysis of temperature and rainfall series of Hirfanli Dam Basin by mann kendall, spearman’s rho and innovative trend analysis. Turkish Journal of Engineering, 8(1), 11–19. http://doi.org/10.31127/tuje.1177522
  • Demir, V., & Keskin, A. Ü. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7(2), 149–162. http://doi.org/10.29128/geomatik.918502
  • Gohil, M., Mehta, D., & Shaikh, M. (2024). An integration of geospatial and fuzzy-logic techniques for multi-hazard mapping. Results in Engineering, 21, 101758, 1–22. https://doi.org/10.1016/j.rineng.2024.101758
  • Ibarreche, J., Aquino, R., Edwards, R. M., Rangel, V., Pérez, I., Martínez, M., Castellanos, E., Álvarez, E., Jimenez, S., Rentería, R., Edwards, A., & Álvarez, O. (2020). Flash flood early warning system in Colima, Mexico. Sensors, 20(18), 1–26. http://doi.org/doi:10.3390/s20185231
  • Ghanbari, A., Tahmasebipour, N., Zeinivand, H., Heidari, M. I. A., & Abdollahi, S. (2024). Flood warning system using internet of things, artificial intelligence and hydraulic modeling (case study: Behesht‑Abad Watershed, Iran). Acta Geophysica, 72, 2815–2829. https://doi.org/10.1007/s11600-023-01174-6
  • Dtissibe, F. Y., Ari, A. A. A., Titouna, C., Thiare, O., & Gueroui, A. M. (2020). Flood forecasting based on an artificial neural network. Natural Hazards, 104, 1211–1237. https://doi.org/10.1007/s11069-020-04211-5
  • Gohil, M., Mehta, D., & Shaikh, M. (2024). An integration of geospatial and fuzzy-logic techniques for flood-hazard mapping. Journal of Earth System Science, 133(2), 80. https://doi.org/10.1007/s12040-024-02288-1
Year 2025, Volume: 9 Issue: 2, 189 - 201
https://doi.org/10.31127/tuje.1530593

Abstract

Project Number

#17B0649001

References

  • NatCatSERVICE. (2016). [Online] Available from: https://www.munichre.com/ [Accessed 20 February 2019]
  • EM-DATi. (2016). The international disasters database [Online] Available from: http://www.emdat.be/ [Accessed 20 February 2019]
  • Mahmood, S., & Rani, R. (2022). People-centric geo-spatial exposure and damage assessment of 2014 flood in lower Chenab Basin, upper Indus Plain in Pakistan. Natural Hazards, 111(3), 3053–3069. https://doi.org/10.1007/s11069-021-05167-w
  • Manizabayo, P., Ngwijabagabo, H., Nzayisenga, I., Nzamwita, S., Amani, L., Uwitonze, E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case studyof Mpazi sub-catchment in the city of Kigali. Advance GIS, 4(1), 31–41. e-ISSN:2822-7026
  • Campolo, M., Soldati, A., & Andreussi, P. (2003). Artificial neural network approach to flood forecasting in River Arno. Hydrological Sciences Journal, 48(3), 381–398. https://doi.org/10.1623/hysj.48.3.381.45286
  • Ashley, S. T., & Ashley, W. S. (2008). Flood fatalities in the United States. American Meteorological Society, 47(3), 805–818. http://doi.org/10.1175/2007JAMC1611.1
  • EsiefarienrheBukohwo, M., & OfikwuEne, P. (2018). Flood prediction in Nigeria using artificial neural network. American Journal of Engineering Research (AJER), 7(9), 15–21. e-ISSN: 2320-0847
  • Gürer, İ., & Uçar, İ. (2021). The inventory of flood disasters in Turkey. 5th International Environmental Conference “Impact of Climate Change, Water and Energy on Sustainable Environmental Resources Management” (CWESM-2021), Krenia North Cyprus.
  • Tortumlu, M., & Altuncı, Y. A. (2024). Analysis of flood disasters in Türkiye and their effects on health. Anatolian Journal of Emergency Medicine, 7(2), 74–80. https://doi.org/10.54996/anatolianjem.1376324
  • Boé, J., Somot, S., Corre, L., & Nabat, P. (2020). Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Climate Dynamics, 54(5–6), 2981–3002. http://doi.org/10.1007/s00382-020-05153-1
  • Borga, M., Gaume, E., Creutin, J. D., & Marchi, L. (2008). Surveying flash flood response: gauging the ungauged extremes. Hydrological Processes, 22(18), 3883–3885. https://doi.org/10.1002/hyp.7111
  • Guéro, P. (2006). Rainfall analysis and flood hydrograph determination in the Munster Blackwater Catchment. (A Thesis of Degree of Master). Department of Civil and Environmental Engineering, University College Cork.
  • Sun, D., Zhang, D., & Cheng, X. (2012). Framework of national non-structural measures for flash flood disaster prevention in China. Water, 4(1), 272–282. https://doi.org/10.3390/w4010272
  • Yang, T. H., Yang, S. C., Ho, J. Y., Lin, G. F., Hwang, G. D., & Lee, C. S. (2015). Flash flood warnings using the ensemble rainfall forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons. Journal of Hydrology, 520, 367–378. http://dx.doi.org/10.1016/j.jhydrol.2014.11.028
  • Carpenter, T. M., Sperfslage, J. A., Geogakakos, K. P., Sweeney, T., & Fread, D. L. (1999). National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. Journal of Hydrology, 224, 21–44. https://doi.org/10.1016/S0022-1694(99)00115-8
  • Prasantha-Hapuarachchi, H. A., & Wang, Q. J. (2008). A review of methods and systems available for flash flood forecasting. Report for the Bureau of Meteorology, Australia. http://doi.org/10.4225/08/58542bbf33ce7
  • Kamali, M. A., & Ma’ady, M. N. P. (2024). IoT-based flood disaster early detection system using hybrid fuzzy logic and neural networks. Telecommunication Computing Electronics and Control, 22(4), 976–984. http://doi.org/10.12928/TELKOMNIKA.v22i4.25868
  • Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Bloschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., & Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1–2), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028
  • Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2), 118–133. https://doi.org/10.1016/j.jhydrol.2010.07.017
  • Ahmad, M., Al Mehedi, M. A., Yazdan, M. M. S., & Kumar, R. (2022). Development of machine learning flood model using artificial aeural network (ANN) at Var River. Liquids, 2, 147–160. https://doi.org/10.3390/liquids2030010
  • Saikh, N. I., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Research, 3, 420–436. https://doi.org/10.1016/j.nhres.2023.05.004
  • Sharma, S., & Kumari, S. (2024). Comparison of machine learning models for flood forecasting in the Mahanadi River Basin, India. Journal of Water and Climate Change, 15(4), 1629–1652. http://doi.org/10.2166/wcc.2024.517
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2023). Modeling of annual maximum flows with geographic data components and artificial neural networks. International Journal of Engineering and Geosciences, 8(2), 200–211. http://doi.org/10.26833/ijeg.1125412
  • Byaruhanga, N., Kibirige, D., Gokool, S., & Mkhonta, G. (2024). Evolution of flood prediction and forecasting models for flood early warning systems: A scoping review. Water, 16(13), 1763, 1–29. https://doi.org/10.3390/w16131763
  • Varoonchotikul, P. (2003). Flood forecasting using artificial neural networks. CRC Press. ISBN 9789058096319
  • Campolo, M., Soldati, A., & Andreussi, P. (1999). Forecasting river flow rate during low-flow periods using neural networks. Water Resources Research, 35(11), 3547–3552. http://doi.org/10.1029/1999WR900205
  • Artigue, G., Johannet, A., Borrell, V., & Pistre, S. (2012). Flash flood forecasting in poorly gauged basins using neural networks: Case study of the Gardon de Mialet Basin (Southern France). Natural Hazards and Earth System Sciences, 12(11), 3307–3324. https://doi.org/10.5194/nhess-12-3307-2012
  • Cools, J., Vanderkimpen, P., El Afandi, G., Abdelkhalek, A., Fockedey, S., El Sammany, M., Abdallah, G., El Bihery, M., Bauwens, W., & Huygens, M. (2012). An early warning system for flash floods in hyper-arid Egypt. Natural Hazards and Earth System Sciences, 12(2), 443–457. https://doi.org/10.5194/nhess-12-443-2012
  • Raja, N. B., & Aydin, O. (2017). New approaches to flash flood forecasting in the Mediterranean Region. Lambert Academic Publishing, Saarbrucken, Germany. ISBN-10:3330321342
  • Lamsal, R., & Vijay Kumar, T. V. (2020). Artificial Intelligence and Early Warning Systems. In: Lamsal, R., & Vijay Kumar, T. V. (Ed). AI and Robotics in Disaster Studies. Palgrave Macmillan, Singapore. http://doi.org/10.1007/978-981-15-4291-6_2
  • Stephens, E., & Cloke, H. (2014). Improving flood forecasts for better flood preparedness in the UK (and beyond). The Geographical Journal, 180(4), 310–316. https://www.jstor.org/stable/43870924
  • Aydin, O., & Raja, N. B. (2020). Spatial-temporal analysis of precipitation characteristics in Artvin, Turkey. Theoretical and Applied Climatology, 142(5), 729–741. http://doi.org/10.1007/s00704-020-03346-6
  • Zeybekoglu, U., & Keskin, A. U. (2020). Detrended fluctuation analyses of rainfall intensities: A case study. International Journal of Global Warming, 21(2), 141–154. http://doi.org/10.1504/IJGW.2020.108175
  • Özalp Yavuz, A., Akıncı, H., & Temuçin, S. (2013). Artvin ili arazisinin topografik ve bazı fiziksel özelliklerinin tespiti ve bu özelliklerin arazi örtüsü ile ilişkisinin incelenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 14(2), 292–309. ISSN:2146-1880
  • Ketin, İ. (1949). Artvin bölgesinin jeolojik etüdü hakkında memuar. Ankara: MTA Enstitü Yayınları.
  • Ketin, İ. (1954). Artvin bölgesinin jeolojik etüdü hakkında memuar. Ankara: MTA Rapor.
  • Gattinger, T. E., Erentöz, C., İhsan, K. (1962). Türkiye jeoloji haritası Trabzon-1.500.000 ölçekli-explonatory text of geological map of Turkey. Modern Tetkik ve Arama Enstitüsü Yayınları, Ankara.
  • Köse, N., & Güner, H. T. (2012). The effect of temperature and precipitation on the intra-annual radial growth of Fagus orientalis Lipsky in Artvin, Turkey. Journal of Agriculture and Forestry, 36(4), 501–509. http://doi.org/10.3906/tar-1109-4
  • Baltaci, H. (2017). Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015. Natural Hazards and Earth System Sciences, 17(7), 1221–1230. https://doi.org/10.5194/nhess-17-1221
  • Turgut, H., & Turgut, B. (2022). The effects of landforms and climate on NDVI in Artvin, Turkey. Eco Mont-Journal on Protected Mountain Areas Research, 14(2), 24–36. http://doi.org/10.1553/eco.mont-14-2s24
  • Pebesma, E. J., & Wesseling, C. G. (1998). Gstat, a program for geostatistical modelling, prediction and simulation. Computers&Geosciences, 24(1), 17–31. https://doi.org/10.1016/S0098-3004(97)00082-4
  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computer&Geosciences, 30, 683–691. http://doi.org/10.1016/j.cageo.2004.03.012
  • Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R (use R!). 1. Edition, Springer, London. http://doi.org/10.1007/978-0-387-78171-6
  • Thompson, D. (2006). The rational method. Engineering, Environmental Science, http://doi.org/10.1007/978-3-642-41714-6_180527
  • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling Software, 25(8), 891–909. https://doi.org/10.1016/j.envsoft.2010.02.003
  • Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. In: Suzuki, K. (Ed). Artificial Neural Networks-Methodological Advances and Biomedical Applications. InTech., Croatia. http://doi.org/10.5772/15751
  • Chaudhari, R. P., Thorat, S. R., Mehta, D. J., Waikhom, S. I., Yadav, V. G., & Kumar, V. (2024). Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 11(5), 741–758. http://doi.org/10.3934/environsci.2024037
  • Mangukiya, N. K., Mehta, D. J., & Jariwala, R. (2022). Flood frequency analysis and inundation mapping for lower Narmada basin, India. Water Practice & Technology, 17(2), 612–622. http://doi.org/10.2166/wpt.2022.009
  • Patel, S., Gohil, M., Pathan, F., Mehta, D., & Waikhom, S. (2024). Assessment of flood risk and its mapping in Navsari District, Gujarat. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(2), 1021–1028. https://doi.org/10.1007/s40996-023-01225-4
  • Mehta, D. J., Eslamian, S., & Prajapati, K. (2022). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: A case study of Navsari Region. Modeling Earth Systems and Environment, 8(2), 2675–2685. https://doi.org/10.1007/s40808-021-01259-5
  • Chang, H., & Franczyk, J. J. (2008). Climate change, land‐use change, and floods: Toward an integrated assessment. Geography Compass, 2(5), 1549–1579. http://doi.org/10.1111/j.1749-8198.2008.00136.x
  • Andersen, T. K., & Marshall Shepherd, J. (2013). Floods in a changing climate. Geography Compass, 7(2). http://doi.org/10.1111/gec3.12025
  • Llasat, M. C. (2021). Floods evolution in the Mediterranean region in a context of climate and environmental change. Geographical Research Letters, 47(1), 13–32. https://doi.org/10.18172/cig.4897
  • Blöschl, G. (2022). Three hypotheses on changing river flood hazards. Hydrology and Earth System Sciences, 26(19), 5015–5033. http://doi.org/10.5194/hess-26-5015-2022
  • Huang, X., Yin, J., Slater, L. J., & Liu, P. (2024). Global projection of flood risk with a bivariate framework under 1.5–3.0°C warming levels. Earth's Future, 12(4), 1–19. http://doi.org/10.1029/2023EF004312
  • Baudhanwala, D., Mehta, D., Zoysa, S., & Rathnayake, U. (2024). Rainfall intensity-duration-frequency relationships: a robust foundation for urban decision-making and flood management: A case study. Journal of Environmental Informatics Letters, 11(2), 101–108. http://doi.org/10.3808/jeil.202400131
  • Kömüşçü, A. Ü., Erkan, A., & Çelik, S. (1998). Analysis of meteorological and terrain features leading to the ̇Izmir Flash Flood, 3–4 November 1995. Natural Hazards, 18, 1–25. http://doi.org/10.1023/A:1008078920113
  • Kotroni, V., Lagouvardos, E., Defer, S., Dietrich, F., Porcù, C., Medaglia, C. M., & Demirtas, M. (2006). The Antalya 5 December 2002 storm: Observations and model analysis. Journal of Applied Meteorology Climatology, 45, 576–590. https://doi.org/10.1175/JAM2347.1
  • Kömüşçü, A. Ü., & Çelik, S. (2013). Analysis of the Marmara flood in Turkey, 7–10 September 2009: An assessment from hydrometeorological perspective. Natural Hazards, 66(2), 781–808. http://doi.org/10.1007/s11069-012-0521-x
  • Baltacı, H. (2018). 18 Temmuz 2017 tarihinde İstanbul’da meydana gelen sel olayının meteorolojik analizi. Marmara Fen Bilimleri Dergisi, 30(1), 55–60. https://doi.org/10.7240/marufbd.397544
  • Özcan, E. (2006). Sel olayı ve Türkiye. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 26(1), 35-50.
  • Akinci, H. (2022). Assessment of rainfall-induced landslide susceptibility in Artvin, Turkey using machine learning techniques. Journal of African Earth Sciences, 191, 1–17. http://doi.org/10.1016/j.jafrearsci.2022.104535
  • Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V., & Azamathulla, H. M. (2023). Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling. Results in Engineering, 20, 101571, 1–13. https://doi.org/10.1016/j.rineng.2023.101571
  • Kantharia, V., Mehta, D., Kumar, V., Shaikh, M. P., & Jha, S. (2024). Rainfall–runoff modeling using an adaptive neuro-fuzzy inference system considering soil moisture for the Damanganga Basin. Journal of Water and Climate Change, 15(5), 2518–2531. https://doi.org/10.2166/wcc.2024.143
  • Akinci, H., Zeybek, M. (2021). Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Natural Hazards, 108, 1515–1543. https://doi.org/10.1007/s11069-021-04743-4
  • Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences, 43(1), 47–66. http://doi.org/10.1080/02626669809492102
  • Kalteh, A. M. (2007). Rainfall-runoff modelling using artificial neural networks (ANNs). (Thesis). Department of Water Resources Engineering, Lund Institute of Technology, Lund University, Sweden.
  • Nkoana, R. (2011). Artificial neural network modelling of flood prediction and early warning. [Doctoral Thesis (compilation), Division of Water Resources Engineering]. Department of Water Resources Engineering, Lund Institute of Technology, Lund University.
  • Elsafi, S. H. (2014). Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Engineering Journal, 53(3), 655–662. https://doi.org/10.1016/j.aej.2014.06.010
  • Gunduz, F., & Zeybekoglu, U. (2024). Analysis of temperature and rainfall series of Hirfanli Dam Basin by mann kendall, spearman’s rho and innovative trend analysis. Turkish Journal of Engineering, 8(1), 11–19. http://doi.org/10.31127/tuje.1177522
  • Demir, V., & Keskin, A. Ü. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7(2), 149–162. http://doi.org/10.29128/geomatik.918502
  • Gohil, M., Mehta, D., & Shaikh, M. (2024). An integration of geospatial and fuzzy-logic techniques for multi-hazard mapping. Results in Engineering, 21, 101758, 1–22. https://doi.org/10.1016/j.rineng.2024.101758
  • Ibarreche, J., Aquino, R., Edwards, R. M., Rangel, V., Pérez, I., Martínez, M., Castellanos, E., Álvarez, E., Jimenez, S., Rentería, R., Edwards, A., & Álvarez, O. (2020). Flash flood early warning system in Colima, Mexico. Sensors, 20(18), 1–26. http://doi.org/doi:10.3390/s20185231
  • Ghanbari, A., Tahmasebipour, N., Zeinivand, H., Heidari, M. I. A., & Abdollahi, S. (2024). Flood warning system using internet of things, artificial intelligence and hydraulic modeling (case study: Behesht‑Abad Watershed, Iran). Acta Geophysica, 72, 2815–2829. https://doi.org/10.1007/s11600-023-01174-6
  • Dtissibe, F. Y., Ari, A. A. A., Titouna, C., Thiare, O., & Gueroui, A. M. (2020). Flood forecasting based on an artificial neural network. Natural Hazards, 104, 1211–1237. https://doi.org/10.1007/s11069-020-04211-5
  • Gohil, M., Mehta, D., & Shaikh, M. (2024). An integration of geospatial and fuzzy-logic techniques for flood-hazard mapping. Journal of Earth System Science, 133(2), 80. https://doi.org/10.1007/s12040-024-02288-1
There are 76 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Articles
Authors

Olgu Aydın 0000-0001-8220-6384

Nussaibah B. Raja 0000-0002-0000-3944

Project Number #17B0649001
Early Pub Date January 19, 2025
Publication Date
Submission Date August 8, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Aydın, O., & Raja, N. B. (2025). Using artificial neural networks for predicting flood events in Artvin, Türkiye. Turkish Journal of Engineering, 9(2), 189-201. https://doi.org/10.31127/tuje.1530593
AMA Aydın O, Raja NB. Using artificial neural networks for predicting flood events in Artvin, Türkiye. TUJE. January 2025;9(2):189-201. doi:10.31127/tuje.1530593
Chicago Aydın, Olgu, and Nussaibah B. Raja. “Using Artificial Neural Networks for Predicting Flood Events in Artvin, Türkiye”. Turkish Journal of Engineering 9, no. 2 (January 2025): 189-201. https://doi.org/10.31127/tuje.1530593.
EndNote Aydın O, Raja NB (January 1, 2025) Using artificial neural networks for predicting flood events in Artvin, Türkiye. Turkish Journal of Engineering 9 2 189–201.
IEEE O. Aydın and N. B. Raja, “Using artificial neural networks for predicting flood events in Artvin, Türkiye”, TUJE, vol. 9, no. 2, pp. 189–201, 2025, doi: 10.31127/tuje.1530593.
ISNAD Aydın, Olgu - Raja, Nussaibah B. “Using Artificial Neural Networks for Predicting Flood Events in Artvin, Türkiye”. Turkish Journal of Engineering 9/2 (January 2025), 189-201. https://doi.org/10.31127/tuje.1530593.
JAMA Aydın O, Raja NB. Using artificial neural networks for predicting flood events in Artvin, Türkiye. TUJE. 2025;9:189–201.
MLA Aydın, Olgu and Nussaibah B. Raja. “Using Artificial Neural Networks for Predicting Flood Events in Artvin, Türkiye”. Turkish Journal of Engineering, vol. 9, no. 2, 2025, pp. 189-01, doi:10.31127/tuje.1530593.
Vancouver Aydın O, Raja NB. Using artificial neural networks for predicting flood events in Artvin, Türkiye. TUJE. 2025;9(2):189-201.
Flag Counter