Review
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 354 - 377
https://doi.org/10.31127/tuje.1581564

Abstract

Project Number

NA

References

  • Manzoor, B., Othman, I., Durdyev, S., Ismail, S., & Wahab, M. (2021). Influence of Artificial Intelligence in Civil Engineering toward Sustainable Development—A Systematic Literature Review. Applied System Innovation, 4(3), 52. https://doi.org/10.3390/asi4030052
  • Hwang, D., Wu, C., Lin, T., & Lin, C. (2023). The future application of artificial intelligence and telemedicine in the retina: A perspective. Taiwan Journal of Ophthalmology, 13(2), 133. https://doi.org/10.4103/tjo.tjo-d-23-00028
  • Brownjohn, J. M. W., De Stefano, A., Xu, Y., Wenzel, H., & Aktan, A. E. (2011). Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring, 1(3–4), 79–95. https://doi.org/10.1007/s13349-011-0009-5 Kumar, A., Arora, H. C., Kapoor, N. R., Kumar, K., Hadzima-Nyarko, M., & Radu, D. (2023). Machine learning intelligence to assess the shear capacity of corroded reinforced concrete beams. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30037-9
  • Kandrashina, M., Arsentev, D., Vinokur, A., Kolodochkin, A., Arzamazov, I., & Kozhukhov, D. (2023). Model for predicting the occurrence of soil compaction. E3S Web of Conferences, 392, 02007. https://doi.org/10.1051/e3sconf/202339202007
  • Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S., Tekalign, T. Y., Weitzner, D., & Matias, Y. (2024). Global prediction of extreme floods in ungauged watersheds. Nature, 627(8004), 559–563. https://doi.org/10.1038/s41586-024-07145-1
  • Kuusi, O., & Heinonen, S. (2022). Scenarios From Artificial Narrow Intelligence to Artificial General Intelligence—Reviewing the Results of the International Work/Technology 2050 Study. World Futures Review, 14(1), 65–79. https://doi.org/10.1177/19467567221101637
  • Radanliev, P. (2024). Artificial intelligence: reflecting on the past and looking towards the next paradigm shift. Journal of Experimental & Theoretical Artificial Intelligence, 1–18. https://doi.org/10.1080/0952813x.2024.2323042
  • Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review, 56(11), 13187–13257. https://doi.org/10.1007/s10462-023-10470-y
  • Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
  • Dixit, R., Chinnam, R. B., & Singh, H. (2020). Artificial Intelligence and Machine Learning in Sparse/Inaccurate Data Situations. IEEE Aerospace Conference, 1–8. https://doi.org/10.1109/aero47225.2020.9172612
  • Pakzad, S. S., Roshan, N., & Ghalehnovi, M. (2023). Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30606-y
  • Wang, J., & Biljecki, F. (2022). Unsupervised machine learning in urban studies: A systematic review of applications. Cities, 129, 103925. https://doi.org/10.1016/j.cities.2022.103925
  • Liu, X., & Rastgoftar, H. (2022). Boundary Control of Traffic Congestion Modeled as a Non-stationary Stochastic Process. 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), 455–461. https://doi.org/10.1109/icarcv57592.2022.10004375
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
  • Ceylan, H., Bayrak, M. B., & Gopalakrishnan, K. (2014). Neural Networks Applications in Pavement Engineering: a recent survey. International Journal of Pavement Research and Technology, 7(6), 434–444. https://doi.org/10.6135/ijprt.org.tw/2014.7(6).434
  • Kudus, S. A., Bunnori, N. M., Basri, S. R., Shahiron, S., Jamil, M. N. M., & Noorsuhada, M. N. (2012). An Overview Current Application of Artificial Neural Network in Concrete. Advanced Materials Research, 626, 372–375. https://doi.org/10.4028/www.scientific.net/amr.626.372
  • Doroshenko, A. (2020). Applying Artificial Neural Networks In Construction. E3S Web of Conferences, 143, 01029. https://doi.org/10.1051/e3sconf/202014301029
  • [m] Bianchini, A., & Bandini, P. (2009). Prediction of Pavement Performance through Neuro-Fuzzy Reasoning. Computer-Aided Civil and Infrastructure Engineering, 25(1), 39–54. https://doi.org/10.1111/j.1467-8667.2009.00615.x
  • Alvanitopoulos, P., Andreadis, I., & Elenas, A. (2010). Neuro-fuzzy techniques for the classification of earthquake damages in buildings. Measurement, 43(6), 797–809. https://doi.org/10.1016/j.measurement.2010.02.011
  • M, I., Masi, S., Caniani, D., & S, D. (2012). Fuzzy Logic and Neuro-Fuzzy Networks for Environmental Hazard Assessment. In InTech eBooks. https://doi.org/10.5772/36141
  • Piryonesi, S. M., Nasseri, M., & Ramezani, A. (2018). Resource leveling in construction projects with activity splitting and resource constraints: a simulated annealing optimization. Canadian Journal of Civil Engineering, 46(2), 81–86. https://doi.org/10.1139/cjce-2017-0670
  • Asmone, A. S., & Chew, M. Y. L. (2018). Merging building maintainability and sustainability assessment: A multicriteria decision making approach. IOP Conference Series Earth and Environmental Science, 117, 012029. https://doi.org/10.1088/1755-1315/117/1/012029
  • Bhosale, V., Shastri, S. S., & Khandare, M. A. (2017). A Review of Genetic Algorithm used for optimizing scheduling of Resource Constraint construction projects. International Research Journal of Engineering and Technology, 4(5), 2869-2872.
  • Mohapatra, S., & Mohapatra, P. (2023). American zebra optimization algorithm for global optimization problems. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-31876-2
  • Kentli, A. (2020). Topology Optimization Applications on Engineering Structures. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.90474
  • Awe, O., Okolie, S., & Fayomi, O. (2019). Optimization of Water Distribution Systems: A Review. Journal of Physics Conference Series, 1378(2), 022068. https://doi.org/10.1088/1742-6596/1378/2/022068
  • Sitzenfrei, R., Oberascher, M., & Zischg, J. (2019). Identification of Network Patterns in Optimal Water Distribution Systems Based on Complex Network Analysis. World Environmental and Water Resources Congress 2011, 473–483. https://doi.org/10.1061/9780784482353.045
  • Baek, S., Oh, J., Woo, H., Kim, I., & Jang, S. (2023). Localization of Cracks in Concrete Structures Lacking Reference Objects and Feature Points Using an Unmanned Aerial Vehicle. Applied Sciences, 13(17), 9918. https://doi.org/10.3390/app13179918
  • Yuan, Y., Ge, Z., Su, X., Guo, X., Suo, T., Liu, Y., & Yu, Q. (2021). Crack Length Measurement Using Convolutional Neural Networks and Image Processing. Sensors, 21(17), 5894. https://doi.org/10.3390/s21175894
  • Le, T., Nguyen, V., & Le, M. V. (2021). Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces. Applied Computational Intelligence and Soft Computing, 2021, 1–10. https://doi.org/10.1155/2021/8858545
  • Fang, W., Chen, Y., & Xue, Q. (2021). Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms. Journal on Big Data, 3(3), 97–110. https://doi.org/10.32604/jbd.2021.016993
  • Belhadi, A., Djenouri, Y., Djenouri, D., & Lin, J. C. (2020). A recurrent neural network for urban long-term traffic flow forecasting. Applied Intelligence, 50(10), 3252–3265. https://doi.org/10.1007/s10489-020-01716-1
  • Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306
  • Luleci, F., Catbas, F. N., & Avci, O. (2022). Generative Adversarial Networks for Data Generation in Structural Health Monitoring. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.816644
  • Zhang, C., Kim, J., Jeon, J., Xing, J., Ahn, C., Tang, P., & Cai, H. (2022). Toward Integrated Human-Machine Intelligence for Civil Engineering: An Interdisciplinary Perspective. Computing in Civil Engineering 2021. https://doi.org/10.1061/9780784483893.035
  • Zinno, R., Haghshenas, S. S., Guido, G., & VItale, A. (2022). Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access, 10, 88058–88078. https://doi.org/10.1109/access.2022.3199443
  • Zhou, Q., Teng, S., Situ, Z., Liao, X., Feng, J., Chen, G., Zhang, J., & Lu, Z. (2023). A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions. Hydrology and Earth System Sciences, 27(9), 1791–1808. https://doi.org/10.5194/hess-27-1791-2023
  • Savino, P., & Tondolo, F. (2022). Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning. Journal of Civil Structural Health Monitoring, 13(1), 35–48. https://doi.org/10.1007/s13349-022-00618-9
  • Datta, S. D., Islam, M., Sobuz, M. H. R., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, e26888. https://doi.org/10.1016/j.heliyon.2024.e26888
  • Santaniello, P., & Russo, P. (2023). Bridge Damage Identification Using Deep Neural Networks on Time–Frequency Signals Representation. Sensors, 23(13), 6152. https://doi.org/10.3390/s23136152
  • Abadi, H. H. N., & Modarres, M. (2023). Predicting System Degradation with a Guided Neural Network Approach. Sensors, 23(14), 6346. https://doi.org/10.3390/s23146346
  • Huynh, T. Q., Nguyen, T. T., & Nguyen, H. (2022). Base resistance of super-large and long piles in soft soil: performance of artificial neural network model and field implications. Acta Geotechnica, 18(5), 2755–2775. https://doi.org/10.1007/s11440-022-01736-w
  • Yang, C., & Jiang, Z. (2022). A Discrete-Time Model-Based Method for Predicting Settlement of Geotechnical Foundations in Buildings. Mobile Information Systems, 2022, 1–7. https://doi.org/10.1155/2022/5631634
  • Lee, S., & Le, T. H. M. (2023). Feasibility of Sustainable Asphalt Concrete Materials Utilizing Waste Plastic Aggregate, Epoxy Resin, and Magnesium-Based Additive. Polymers, 15(15), 3293. https://doi.org/10.3390/polym15153293
  • Sesugh, T., Onyia, M., & Fidelis, O. (2024). Predicting the compressive strength of self-compacting concrete using artificial intelligence techniques: A review. Turkish Journal of Engineering, 8(3), 537-550. https://doi.org/10.31127/tuje.1422225
  • Sun, G., Hasanipanah, M., Amnieh, H. B., & Foong, L. K. (2020). Feasibility of indirect measurement of bearing capacity of driven piles based on a computational intelligence technique. Measurement, 156, 107577. https://doi.org/10.1016/j.measurement.2020.107577
  • Ofrikhter, I. V., & Ponomarev, A. B. (2021). Estimation of load-set behavior of driven concrete piles using artificial neural network and cone penetration test. Journal of Physics Conference Series, 1928(1), 012055. https://doi.org/10.1088/1742-6596/1928/1/012055
  • Pham, T. A., Ly, H., Tran, V. Q., Van Giap, L., Vu, H. T., & Duong, H. T. (2020). Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest. Applied Sciences, 10(5), 1871. https://doi.org/10.3390/app10051871
  • Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O., & Nasirahmadi, A. (2022). Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering, 4(1), 70–103. https://doi.org/10.3390/agriengineering4010006
  • Uzer, A. U. (2024). Efficient prediction of compressive strength in geotechnical engineering using artificial neural networks. Turkish Journal of Engineering, 8(3), 457-468. https://doi.org/10.31127/tuje.1415931
  • Othman, M. M. (2023). Modeling of daily groundwater level using deep learning neural networks. Turkish Journal of Engineering, 7(4), 331-337. https://doi.org/10.31127/tuje.1169908
  • Mogaraju, J. K. (2023). Application of machine learning algorithms in the investigation of groundwater quality parameters over YSR district, India. Turkish Journal of Engineering, 7(1), 64-72. https://doi.org/10.31127/tuje.1032314
  • Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review, 56(11), 13187–13257. https://doi.org/10.1007/s10462-023-10470-y
  • Poudel, S., Arafat, M. Y., & Moh, S. (2023). Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey. Sensors, 23(6), 3051. https://doi.org/10.3390/s23063051 Alkhraisat, H., Dalbah, L. M., Al-Betar, M. A., Awadallah, M. A., Assaleh, K., & Deriche, M. (2023). Size Optimization of Truss Structures Using Improved Grey Wolf Optimizer. IEEE Access, 11, 13383–13397. https://doi.org/10.1109/access.2023.3243164
  • Wang, C., Li, D., Kaewniam, P., Wang, J., & Hababi, T. A. (2023). An ED-PSO model updating algorithm for structure health monitoring of beam-like structures. Journal of Measurements in Engineering, 11(3), 358–372. https://doi.org/10.21595/jme.2023.23417
  • Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft, M., Dietterich, T. G., & Muller, K. (2021). A Unifying Review of Deep and Shallow Anomaly Detection. Proceedings of the IEEE, 109(5), 756–795. https://doi.org/10.1109/jproc.2021.3052449
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
  • Gwon, G., Lee, J. H., Kim, I., & Jung, H. (2023). CNN-Based Image Quality Classification Considering Quality Degradation in Bridge Inspection Using an Unmanned Aerial Vehicle. IEEE Access, 11, 22096–22113. https://doi.org/10.1109/access.2023.3238204
  • Kim, S., Jang, J., & Na, W. S. (2021). Automatic Creation of Heuristic-Based Truck Movement Paths for Construction Equipment Control. Applied Sciences, 11(13), 5837. https://doi.org/10.3390/app11135837
  • Martinez, P., Barkokebas, B., Hamzeh, F., Al-Hussein, M., & Ahmad, R. (2021). A vision-based approach for automatic progress tracking of floor paneling in offsite construction facilities. Automation in Construction, 125, 103620. https://doi.org/10.1016/j.autcon.2021.103620
  • Luo, X., Zhu, C., Zhang, D., & Li, Q. (2023). Dynamic Graph Convolutional Network with Attention Fusion for Traffic Flow Prediction. In Frontiers in artificial intelligence and applications. https://doi.org/10.3233/faia230446 Liu, Y., Lyu, C., Zhang, Y., Liu, Z., Yu, W., & Qu, X. (2021). DeepTSP: Deep traffic state prediction model based on large-scale empirical data. Communications in Transportation Research, 1, 100012. https://doi.org/10.1016/j.commtr.2021.100012
  • Chang, C. M., Salinas, G. T., Gamero, T. S., Schroeder, S., Canchanya, M. a. V., & Mahnaz, S. L. (2023). An Infrastructure Management Humanistic Approach for Smart Cities Development, Evolution, and Sustainability. Infrastructures, 8(9), 127. https://doi.org/10.3390/infrastructures8090127
  • Nübel, K., Bühler, M. M., & Jelinek, T. (2021). Federated Digital Platforms: Value Chain Integration for Sustainable Infrastructure Planning and Delivery. Sustainability, 13(16), 8996. https://doi.org/10.3390/su13168996
  • Kicinger, R., Arciszewski, T., & De Jong, K. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 83(23–24), 1943–1978. https://doi.org/10.1016/j.compstruc.2005.03.002
  • Greiner, D., Periaux, J., Quagliarella, D., Magalhaes-Mendes, J., & Galván, B. (2018). Evolutionary Algorithms and Metaheuristics: Applications in Engineering Design and Optimization. Mathematical Problems in Engineering, 2018, 1–4. https://doi.org/10.1155/2018/2793762
  • Gomes, C., Parente, M., Azenha, M., & Lino, J. C. (2018). An integrated framework for multi-criteria optimization of thin concrete shells at early design stages. Advanced Engineering Informatics, 38, 330–342. https://doi.org/10.1016/j.aei.2018.08.003
  • Khodabandehlou, H., Pekcan, G., & Fadali, M. S. (2018). Vibration‐based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, e2308. https://doi.org/10.1002/stc.2308
  • Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2020). A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing, 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077 Neves, A. C., González, I., Leander, J., & Karoumi, R. (2017). Structural health monitoring of bridges: a model-free ANN-based approach to damage detection. Journal of Civil Structural Health Monitoring, 7(5), 689–702. https://doi.org/10.1007/s13349-017-0252-5
  • Leung, A. K., Liu, J., & Jiang, Z. (2023). When nature meets technology: AI-informed discovery of soil-water-root physical interaction. E3S Web of Conferences, 382, 21001. https://doi.org/10.1051/e3sconf/202338221001
  • Provenzano, P. (2003). A Fuzzy‐Neural Network Method for Modeling Uncertainties in Soil‐Structure Interaction Problems. Computer-Aided Civil and Infrastructure Engineering, 18(6), 391–411. https://doi.org/10.1111/1467-8667.00326
  • Deris, A. M., Solemon, B., & Omar, R. C. (2021). A comparative study of supervised machine learning approaches for slope failure production. E3S Web of Conferences, 325, 01001. https://doi.org/10.1051/e3sconf/202132501001
  • Adeyemo, J., & Stretch, D. (2017). Review of hybrid evolutionary algorithms for optimizing a reservoir. South African Journal of Chemical Engineering, 25, 22–31. https://doi.org/10.1016/j.sajce.2017.11.004
  • Lai, G., Chang, W., Yang, Y., & Liu, H. (2018). Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In International ACM SIGIR Conference on Research & Development in Information Retrieval (41st ed.). ACM. https://doi.org/10.1145/3209978.3210006 Wei, J., Luo, X., Huang, H., Liao, W., Lei, X., Zhao, J., & Wang, H. (2023). Enable high-resolution, real-time ensemble simulation and data assimilation of flood inundation using distributed GPU parallelization. Journal of Hydrology, 619, 129277. https://doi.org/10.1016/j.jhydrol.2023.129277
  • Olariu, S. (2021). Vehicular Crowdsourcing for Congestion Support in Smart Cities. Smart Cities, 4(2), 662–685. https://doi.org/10.3390/smartcities4020034
  • Wang, J., Jiang, S., Qiu, Y., Zhang, Y., Ying, J., & Du, Y. (2021). Traffic Signal Optimization under Connected-Vehicle Environment: An Overview. Journal of Advanced Transportation, 2021, 1–16. https://doi.org/10.1155/2021/3584569
  • Huang, Y., Jafari, M., & Jin, P. J. (2022). Driving Safety Prediction and Safe Route Mapping Using In-Vehicle and Roadside Data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4135994 Ruther, R., Klos, A., Rosenbaum, M., & Schiffmann, W. (2021). Traffic Flow Forecast of Road Networks With Recurrent Neural Networks. In International Symposium on Computer Science and Intelligent Controls (ISCSIC) (Vol. 79, pp. 31–38). IEEE. https://doi.org/10.1109/iscsic54682.2021.00018
  • Belhadi, A., Djenouri, Y., Djenouri, D., & Lin, J. C. (2020). A recurrent neural network for urban long-term traffic flow forecasting. Applied Intelligence, 50(10), 3252–3265. https://doi.org/10.1007/s10489-020-01716-1
  • Liu, S., Li, Z., & Li, H. (2020). Research on short-term traffic flow prediction model based on RNN-LSTM. IOP Conference Series Materials Science and Engineering, 806(1), 012017. https://doi.org/10.1088/1757-899x/806/1/012017
  • Xin-Chun, C., Peng, D., Nai-Qing, Y., & Meng-Xue, B. (2021). Study on Discrete Manufacturing Quality Control Technology Based on Big Data and Pattern Recognition. Mathematical Problems in Engineering, 2021, 1–10. https://doi.org/10.1155/2021/8847094
  • Slaton, T., Hernandez, C., & Akhavian, R. (2020). Construction activity recognition with convolutional recurrent networks. Automation in Construction, 113, 103138. https://doi.org/10.1016/j.autcon.2020.103138
  • Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044
  • Wang, Y., Ning, X., Zhen, D., Yong, W., & Zhang, H. (2023). Research on Construction Project Cost Prediction Model Based on Recurrent Neural Network. SHS Web of Conferences, 170, 02009. https://doi.org/10.1051/shsconf/202317002009
  • Saikai, Y., Peake, A., & Chenu, K. (2023). Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback. PLOS Water, 2(9), e0000169. https://doi.org/10.1371/journal.pwat.0000169
  • Du, W., & Ding, X. (2024). Optimizing Irrigation Efficiency using Deep Reinforcement Learning in the Field. ACM Transactions on Sensor Networks. https://doi.org/10.1145/3662182 Kühnert, C., Gonuguntla, N. M., Krieg, H., Nowak, D., & Thomas, J. A. (2021). Application of LSTM Networks for Water Demand Prediction in Optimal Pump Control. Water, 13(5), 644. https://doi.org/10.3390/w13050644
  • Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123.
  • Uray, E. (2022). Gabion structures and retaining walls design criteria. Advanced Engineering Science, 2, 127–134. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/514
  • Karasu , V. ., Yalçın, C. . ., & Uras , Y. . (2023). Geology, geochemistry and isotope compositions of carbonate-hosted barite deposit in Koçaşlı (Gülnar-Mersin, Türkiye). Engineering Applications, 2(1), 75–83. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/852
  • Zela, K., & Saliaj, L. (2023). Forecasting through neural networks: Bitcoin price prediction. Engineering Applications, 2(3), 218–224. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/874
  • Hajderi , A. ., Bozo , L. ., & Basholli , F. . (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1497
  • Hajderi , A. ., & Bozo, L., (2024). Health risks from air pollution from vehicles in the city of Tirana. Engineering Applications, 3(1), 68–77. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/1182
  • Bozkurt, Özlem. (2023). Formation of entrance doors in traditional wooden buildings in the city center of Tekirdağ. Advanced Engineering Science, 3, 103–111. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/961
  • Çimen, Ömür ., & Keskin, S. N. (2024). Investigation of the effect of Isparta pumice on the unconfined compressive strength and swelling pressure of clay. Advanced Engineering Science, 4, 113–119. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1568
  • Karakurt , A. B. ., & Ertuğrul , Özgür L. . (2023). Effect of rice husk ash addition on the consolidation characteristics of cohesive soils. Engineering Applications, 2(1), 7–15. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/848

Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning

Year 2025, Volume: 9 Issue: 2, 354 - 377
https://doi.org/10.31127/tuje.1581564

Abstract

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are a great advantage that is coming to civil engineering in ways that detail accuracy can be enhanced, many tasks automated, and predictive modeling improved. Across some of the significant subdomains, these technologies allow for eminent progress in structural health monitoring, geotechnical engineering, hydraulic systems, construction management. Currently, AI-powered models such as Artificial Neural Networks (ANNs), fuzzy logic, and evolution-based algorithms allow engineers to predict failure, optimize design, and better resource management of infrastructures. Yet, despite the potential, the adoption of AI, ML, and DL into civil engineering faces a host of challenges including data availability, computational complexity, model interpretability, integration with traditional systems, etc. High-quality, real-time data collection remains expensive and the resource-intensive nature of DL models limits their application to a large scale. In addition, the "black-box" nature of these models raises ethical and regulatory issues especially in decisions related to safety. Against this backdrop, this paper reviews current and potential applications of AI, ML, and DL in civil engineering within the framework of benefits and limitations of AI, ML, and DL, focusing on comparisons. Besides that, the paper outlines future directions regarding cloud computing, explainable AI, and regulatory frameworks. With all these changes within the scope of the discipline, AI-driven technologies will be major in safe, efficient, and sustainable infrastructure systems, provided that success is specifically dependent on addressing these key challenges.

Project Number

NA

References

  • Manzoor, B., Othman, I., Durdyev, S., Ismail, S., & Wahab, M. (2021). Influence of Artificial Intelligence in Civil Engineering toward Sustainable Development—A Systematic Literature Review. Applied System Innovation, 4(3), 52. https://doi.org/10.3390/asi4030052
  • Hwang, D., Wu, C., Lin, T., & Lin, C. (2023). The future application of artificial intelligence and telemedicine in the retina: A perspective. Taiwan Journal of Ophthalmology, 13(2), 133. https://doi.org/10.4103/tjo.tjo-d-23-00028
  • Brownjohn, J. M. W., De Stefano, A., Xu, Y., Wenzel, H., & Aktan, A. E. (2011). Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring, 1(3–4), 79–95. https://doi.org/10.1007/s13349-011-0009-5 Kumar, A., Arora, H. C., Kapoor, N. R., Kumar, K., Hadzima-Nyarko, M., & Radu, D. (2023). Machine learning intelligence to assess the shear capacity of corroded reinforced concrete beams. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30037-9
  • Kandrashina, M., Arsentev, D., Vinokur, A., Kolodochkin, A., Arzamazov, I., & Kozhukhov, D. (2023). Model for predicting the occurrence of soil compaction. E3S Web of Conferences, 392, 02007. https://doi.org/10.1051/e3sconf/202339202007
  • Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S., Tekalign, T. Y., Weitzner, D., & Matias, Y. (2024). Global prediction of extreme floods in ungauged watersheds. Nature, 627(8004), 559–563. https://doi.org/10.1038/s41586-024-07145-1
  • Kuusi, O., & Heinonen, S. (2022). Scenarios From Artificial Narrow Intelligence to Artificial General Intelligence—Reviewing the Results of the International Work/Technology 2050 Study. World Futures Review, 14(1), 65–79. https://doi.org/10.1177/19467567221101637
  • Radanliev, P. (2024). Artificial intelligence: reflecting on the past and looking towards the next paradigm shift. Journal of Experimental & Theoretical Artificial Intelligence, 1–18. https://doi.org/10.1080/0952813x.2024.2323042
  • Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review, 56(11), 13187–13257. https://doi.org/10.1007/s10462-023-10470-y
  • Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
  • Dixit, R., Chinnam, R. B., & Singh, H. (2020). Artificial Intelligence and Machine Learning in Sparse/Inaccurate Data Situations. IEEE Aerospace Conference, 1–8. https://doi.org/10.1109/aero47225.2020.9172612
  • Pakzad, S. S., Roshan, N., & Ghalehnovi, M. (2023). Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30606-y
  • Wang, J., & Biljecki, F. (2022). Unsupervised machine learning in urban studies: A systematic review of applications. Cities, 129, 103925. https://doi.org/10.1016/j.cities.2022.103925
  • Liu, X., & Rastgoftar, H. (2022). Boundary Control of Traffic Congestion Modeled as a Non-stationary Stochastic Process. 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), 455–461. https://doi.org/10.1109/icarcv57592.2022.10004375
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
  • Ceylan, H., Bayrak, M. B., & Gopalakrishnan, K. (2014). Neural Networks Applications in Pavement Engineering: a recent survey. International Journal of Pavement Research and Technology, 7(6), 434–444. https://doi.org/10.6135/ijprt.org.tw/2014.7(6).434
  • Kudus, S. A., Bunnori, N. M., Basri, S. R., Shahiron, S., Jamil, M. N. M., & Noorsuhada, M. N. (2012). An Overview Current Application of Artificial Neural Network in Concrete. Advanced Materials Research, 626, 372–375. https://doi.org/10.4028/www.scientific.net/amr.626.372
  • Doroshenko, A. (2020). Applying Artificial Neural Networks In Construction. E3S Web of Conferences, 143, 01029. https://doi.org/10.1051/e3sconf/202014301029
  • [m] Bianchini, A., & Bandini, P. (2009). Prediction of Pavement Performance through Neuro-Fuzzy Reasoning. Computer-Aided Civil and Infrastructure Engineering, 25(1), 39–54. https://doi.org/10.1111/j.1467-8667.2009.00615.x
  • Alvanitopoulos, P., Andreadis, I., & Elenas, A. (2010). Neuro-fuzzy techniques for the classification of earthquake damages in buildings. Measurement, 43(6), 797–809. https://doi.org/10.1016/j.measurement.2010.02.011
  • M, I., Masi, S., Caniani, D., & S, D. (2012). Fuzzy Logic and Neuro-Fuzzy Networks for Environmental Hazard Assessment. In InTech eBooks. https://doi.org/10.5772/36141
  • Piryonesi, S. M., Nasseri, M., & Ramezani, A. (2018). Resource leveling in construction projects with activity splitting and resource constraints: a simulated annealing optimization. Canadian Journal of Civil Engineering, 46(2), 81–86. https://doi.org/10.1139/cjce-2017-0670
  • Asmone, A. S., & Chew, M. Y. L. (2018). Merging building maintainability and sustainability assessment: A multicriteria decision making approach. IOP Conference Series Earth and Environmental Science, 117, 012029. https://doi.org/10.1088/1755-1315/117/1/012029
  • Bhosale, V., Shastri, S. S., & Khandare, M. A. (2017). A Review of Genetic Algorithm used for optimizing scheduling of Resource Constraint construction projects. International Research Journal of Engineering and Technology, 4(5), 2869-2872.
  • Mohapatra, S., & Mohapatra, P. (2023). American zebra optimization algorithm for global optimization problems. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-31876-2
  • Kentli, A. (2020). Topology Optimization Applications on Engineering Structures. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.90474
  • Awe, O., Okolie, S., & Fayomi, O. (2019). Optimization of Water Distribution Systems: A Review. Journal of Physics Conference Series, 1378(2), 022068. https://doi.org/10.1088/1742-6596/1378/2/022068
  • Sitzenfrei, R., Oberascher, M., & Zischg, J. (2019). Identification of Network Patterns in Optimal Water Distribution Systems Based on Complex Network Analysis. World Environmental and Water Resources Congress 2011, 473–483. https://doi.org/10.1061/9780784482353.045
  • Baek, S., Oh, J., Woo, H., Kim, I., & Jang, S. (2023). Localization of Cracks in Concrete Structures Lacking Reference Objects and Feature Points Using an Unmanned Aerial Vehicle. Applied Sciences, 13(17), 9918. https://doi.org/10.3390/app13179918
  • Yuan, Y., Ge, Z., Su, X., Guo, X., Suo, T., Liu, Y., & Yu, Q. (2021). Crack Length Measurement Using Convolutional Neural Networks and Image Processing. Sensors, 21(17), 5894. https://doi.org/10.3390/s21175894
  • Le, T., Nguyen, V., & Le, M. V. (2021). Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces. Applied Computational Intelligence and Soft Computing, 2021, 1–10. https://doi.org/10.1155/2021/8858545
  • Fang, W., Chen, Y., & Xue, Q. (2021). Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms. Journal on Big Data, 3(3), 97–110. https://doi.org/10.32604/jbd.2021.016993
  • Belhadi, A., Djenouri, Y., Djenouri, D., & Lin, J. C. (2020). A recurrent neural network for urban long-term traffic flow forecasting. Applied Intelligence, 50(10), 3252–3265. https://doi.org/10.1007/s10489-020-01716-1
  • Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306
  • Luleci, F., Catbas, F. N., & Avci, O. (2022). Generative Adversarial Networks for Data Generation in Structural Health Monitoring. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.816644
  • Zhang, C., Kim, J., Jeon, J., Xing, J., Ahn, C., Tang, P., & Cai, H. (2022). Toward Integrated Human-Machine Intelligence for Civil Engineering: An Interdisciplinary Perspective. Computing in Civil Engineering 2021. https://doi.org/10.1061/9780784483893.035
  • Zinno, R., Haghshenas, S. S., Guido, G., & VItale, A. (2022). Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access, 10, 88058–88078. https://doi.org/10.1109/access.2022.3199443
  • Zhou, Q., Teng, S., Situ, Z., Liao, X., Feng, J., Chen, G., Zhang, J., & Lu, Z. (2023). A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions. Hydrology and Earth System Sciences, 27(9), 1791–1808. https://doi.org/10.5194/hess-27-1791-2023
  • Savino, P., & Tondolo, F. (2022). Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning. Journal of Civil Structural Health Monitoring, 13(1), 35–48. https://doi.org/10.1007/s13349-022-00618-9
  • Datta, S. D., Islam, M., Sobuz, M. H. R., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, e26888. https://doi.org/10.1016/j.heliyon.2024.e26888
  • Santaniello, P., & Russo, P. (2023). Bridge Damage Identification Using Deep Neural Networks on Time–Frequency Signals Representation. Sensors, 23(13), 6152. https://doi.org/10.3390/s23136152
  • Abadi, H. H. N., & Modarres, M. (2023). Predicting System Degradation with a Guided Neural Network Approach. Sensors, 23(14), 6346. https://doi.org/10.3390/s23146346
  • Huynh, T. Q., Nguyen, T. T., & Nguyen, H. (2022). Base resistance of super-large and long piles in soft soil: performance of artificial neural network model and field implications. Acta Geotechnica, 18(5), 2755–2775. https://doi.org/10.1007/s11440-022-01736-w
  • Yang, C., & Jiang, Z. (2022). A Discrete-Time Model-Based Method for Predicting Settlement of Geotechnical Foundations in Buildings. Mobile Information Systems, 2022, 1–7. https://doi.org/10.1155/2022/5631634
  • Lee, S., & Le, T. H. M. (2023). Feasibility of Sustainable Asphalt Concrete Materials Utilizing Waste Plastic Aggregate, Epoxy Resin, and Magnesium-Based Additive. Polymers, 15(15), 3293. https://doi.org/10.3390/polym15153293
  • Sesugh, T., Onyia, M., & Fidelis, O. (2024). Predicting the compressive strength of self-compacting concrete using artificial intelligence techniques: A review. Turkish Journal of Engineering, 8(3), 537-550. https://doi.org/10.31127/tuje.1422225
  • Sun, G., Hasanipanah, M., Amnieh, H. B., & Foong, L. K. (2020). Feasibility of indirect measurement of bearing capacity of driven piles based on a computational intelligence technique. Measurement, 156, 107577. https://doi.org/10.1016/j.measurement.2020.107577
  • Ofrikhter, I. V., & Ponomarev, A. B. (2021). Estimation of load-set behavior of driven concrete piles using artificial neural network and cone penetration test. Journal of Physics Conference Series, 1928(1), 012055. https://doi.org/10.1088/1742-6596/1928/1/012055
  • Pham, T. A., Ly, H., Tran, V. Q., Van Giap, L., Vu, H. T., & Duong, H. T. (2020). Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest. Applied Sciences, 10(5), 1871. https://doi.org/10.3390/app10051871
  • Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O., & Nasirahmadi, A. (2022). Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering, 4(1), 70–103. https://doi.org/10.3390/agriengineering4010006
  • Uzer, A. U. (2024). Efficient prediction of compressive strength in geotechnical engineering using artificial neural networks. Turkish Journal of Engineering, 8(3), 457-468. https://doi.org/10.31127/tuje.1415931
  • Othman, M. M. (2023). Modeling of daily groundwater level using deep learning neural networks. Turkish Journal of Engineering, 7(4), 331-337. https://doi.org/10.31127/tuje.1169908
  • Mogaraju, J. K. (2023). Application of machine learning algorithms in the investigation of groundwater quality parameters over YSR district, India. Turkish Journal of Engineering, 7(1), 64-72. https://doi.org/10.31127/tuje.1032314
  • Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review, 56(11), 13187–13257. https://doi.org/10.1007/s10462-023-10470-y
  • Poudel, S., Arafat, M. Y., & Moh, S. (2023). Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey. Sensors, 23(6), 3051. https://doi.org/10.3390/s23063051 Alkhraisat, H., Dalbah, L. M., Al-Betar, M. A., Awadallah, M. A., Assaleh, K., & Deriche, M. (2023). Size Optimization of Truss Structures Using Improved Grey Wolf Optimizer. IEEE Access, 11, 13383–13397. https://doi.org/10.1109/access.2023.3243164
  • Wang, C., Li, D., Kaewniam, P., Wang, J., & Hababi, T. A. (2023). An ED-PSO model updating algorithm for structure health monitoring of beam-like structures. Journal of Measurements in Engineering, 11(3), 358–372. https://doi.org/10.21595/jme.2023.23417
  • Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft, M., Dietterich, T. G., & Muller, K. (2021). A Unifying Review of Deep and Shallow Anomaly Detection. Proceedings of the IEEE, 109(5), 756–795. https://doi.org/10.1109/jproc.2021.3052449
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
  • Gwon, G., Lee, J. H., Kim, I., & Jung, H. (2023). CNN-Based Image Quality Classification Considering Quality Degradation in Bridge Inspection Using an Unmanned Aerial Vehicle. IEEE Access, 11, 22096–22113. https://doi.org/10.1109/access.2023.3238204
  • Kim, S., Jang, J., & Na, W. S. (2021). Automatic Creation of Heuristic-Based Truck Movement Paths for Construction Equipment Control. Applied Sciences, 11(13), 5837. https://doi.org/10.3390/app11135837
  • Martinez, P., Barkokebas, B., Hamzeh, F., Al-Hussein, M., & Ahmad, R. (2021). A vision-based approach for automatic progress tracking of floor paneling in offsite construction facilities. Automation in Construction, 125, 103620. https://doi.org/10.1016/j.autcon.2021.103620
  • Luo, X., Zhu, C., Zhang, D., & Li, Q. (2023). Dynamic Graph Convolutional Network with Attention Fusion for Traffic Flow Prediction. In Frontiers in artificial intelligence and applications. https://doi.org/10.3233/faia230446 Liu, Y., Lyu, C., Zhang, Y., Liu, Z., Yu, W., & Qu, X. (2021). DeepTSP: Deep traffic state prediction model based on large-scale empirical data. Communications in Transportation Research, 1, 100012. https://doi.org/10.1016/j.commtr.2021.100012
  • Chang, C. M., Salinas, G. T., Gamero, T. S., Schroeder, S., Canchanya, M. a. V., & Mahnaz, S. L. (2023). An Infrastructure Management Humanistic Approach for Smart Cities Development, Evolution, and Sustainability. Infrastructures, 8(9), 127. https://doi.org/10.3390/infrastructures8090127
  • Nübel, K., Bühler, M. M., & Jelinek, T. (2021). Federated Digital Platforms: Value Chain Integration for Sustainable Infrastructure Planning and Delivery. Sustainability, 13(16), 8996. https://doi.org/10.3390/su13168996
  • Kicinger, R., Arciszewski, T., & De Jong, K. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 83(23–24), 1943–1978. https://doi.org/10.1016/j.compstruc.2005.03.002
  • Greiner, D., Periaux, J., Quagliarella, D., Magalhaes-Mendes, J., & Galván, B. (2018). Evolutionary Algorithms and Metaheuristics: Applications in Engineering Design and Optimization. Mathematical Problems in Engineering, 2018, 1–4. https://doi.org/10.1155/2018/2793762
  • Gomes, C., Parente, M., Azenha, M., & Lino, J. C. (2018). An integrated framework for multi-criteria optimization of thin concrete shells at early design stages. Advanced Engineering Informatics, 38, 330–342. https://doi.org/10.1016/j.aei.2018.08.003
  • Khodabandehlou, H., Pekcan, G., & Fadali, M. S. (2018). Vibration‐based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, e2308. https://doi.org/10.1002/stc.2308
  • Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2020). A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing, 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077 Neves, A. C., González, I., Leander, J., & Karoumi, R. (2017). Structural health monitoring of bridges: a model-free ANN-based approach to damage detection. Journal of Civil Structural Health Monitoring, 7(5), 689–702. https://doi.org/10.1007/s13349-017-0252-5
  • Leung, A. K., Liu, J., & Jiang, Z. (2023). When nature meets technology: AI-informed discovery of soil-water-root physical interaction. E3S Web of Conferences, 382, 21001. https://doi.org/10.1051/e3sconf/202338221001
  • Provenzano, P. (2003). A Fuzzy‐Neural Network Method for Modeling Uncertainties in Soil‐Structure Interaction Problems. Computer-Aided Civil and Infrastructure Engineering, 18(6), 391–411. https://doi.org/10.1111/1467-8667.00326
  • Deris, A. M., Solemon, B., & Omar, R. C. (2021). A comparative study of supervised machine learning approaches for slope failure production. E3S Web of Conferences, 325, 01001. https://doi.org/10.1051/e3sconf/202132501001
  • Adeyemo, J., & Stretch, D. (2017). Review of hybrid evolutionary algorithms for optimizing a reservoir. South African Journal of Chemical Engineering, 25, 22–31. https://doi.org/10.1016/j.sajce.2017.11.004
  • Lai, G., Chang, W., Yang, Y., & Liu, H. (2018). Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In International ACM SIGIR Conference on Research & Development in Information Retrieval (41st ed.). ACM. https://doi.org/10.1145/3209978.3210006 Wei, J., Luo, X., Huang, H., Liao, W., Lei, X., Zhao, J., & Wang, H. (2023). Enable high-resolution, real-time ensemble simulation and data assimilation of flood inundation using distributed GPU parallelization. Journal of Hydrology, 619, 129277. https://doi.org/10.1016/j.jhydrol.2023.129277
  • Olariu, S. (2021). Vehicular Crowdsourcing for Congestion Support in Smart Cities. Smart Cities, 4(2), 662–685. https://doi.org/10.3390/smartcities4020034
  • Wang, J., Jiang, S., Qiu, Y., Zhang, Y., Ying, J., & Du, Y. (2021). Traffic Signal Optimization under Connected-Vehicle Environment: An Overview. Journal of Advanced Transportation, 2021, 1–16. https://doi.org/10.1155/2021/3584569
  • Huang, Y., Jafari, M., & Jin, P. J. (2022). Driving Safety Prediction and Safe Route Mapping Using In-Vehicle and Roadside Data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4135994 Ruther, R., Klos, A., Rosenbaum, M., & Schiffmann, W. (2021). Traffic Flow Forecast of Road Networks With Recurrent Neural Networks. In International Symposium on Computer Science and Intelligent Controls (ISCSIC) (Vol. 79, pp. 31–38). IEEE. https://doi.org/10.1109/iscsic54682.2021.00018
  • Belhadi, A., Djenouri, Y., Djenouri, D., & Lin, J. C. (2020). A recurrent neural network for urban long-term traffic flow forecasting. Applied Intelligence, 50(10), 3252–3265. https://doi.org/10.1007/s10489-020-01716-1
  • Liu, S., Li, Z., & Li, H. (2020). Research on short-term traffic flow prediction model based on RNN-LSTM. IOP Conference Series Materials Science and Engineering, 806(1), 012017. https://doi.org/10.1088/1757-899x/806/1/012017
  • Xin-Chun, C., Peng, D., Nai-Qing, Y., & Meng-Xue, B. (2021). Study on Discrete Manufacturing Quality Control Technology Based on Big Data and Pattern Recognition. Mathematical Problems in Engineering, 2021, 1–10. https://doi.org/10.1155/2021/8847094
  • Slaton, T., Hernandez, C., & Akhavian, R. (2020). Construction activity recognition with convolutional recurrent networks. Automation in Construction, 113, 103138. https://doi.org/10.1016/j.autcon.2020.103138
  • Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044
  • Wang, Y., Ning, X., Zhen, D., Yong, W., & Zhang, H. (2023). Research on Construction Project Cost Prediction Model Based on Recurrent Neural Network. SHS Web of Conferences, 170, 02009. https://doi.org/10.1051/shsconf/202317002009
  • Saikai, Y., Peake, A., & Chenu, K. (2023). Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback. PLOS Water, 2(9), e0000169. https://doi.org/10.1371/journal.pwat.0000169
  • Du, W., & Ding, X. (2024). Optimizing Irrigation Efficiency using Deep Reinforcement Learning in the Field. ACM Transactions on Sensor Networks. https://doi.org/10.1145/3662182 Kühnert, C., Gonuguntla, N. M., Krieg, H., Nowak, D., & Thomas, J. A. (2021). Application of LSTM Networks for Water Demand Prediction in Optimal Pump Control. Water, 13(5), 644. https://doi.org/10.3390/w13050644
  • Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123.
  • Uray, E. (2022). Gabion structures and retaining walls design criteria. Advanced Engineering Science, 2, 127–134. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/514
  • Karasu , V. ., Yalçın, C. . ., & Uras , Y. . (2023). Geology, geochemistry and isotope compositions of carbonate-hosted barite deposit in Koçaşlı (Gülnar-Mersin, Türkiye). Engineering Applications, 2(1), 75–83. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/852
  • Zela, K., & Saliaj, L. (2023). Forecasting through neural networks: Bitcoin price prediction. Engineering Applications, 2(3), 218–224. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/874
  • Hajderi , A. ., Bozo , L. ., & Basholli , F. . (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1497
  • Hajderi , A. ., & Bozo, L., (2024). Health risks from air pollution from vehicles in the city of Tirana. Engineering Applications, 3(1), 68–77. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/1182
  • Bozkurt, Özlem. (2023). Formation of entrance doors in traditional wooden buildings in the city center of Tekirdağ. Advanced Engineering Science, 3, 103–111. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/961
  • Çimen, Ömür ., & Keskin, S. N. (2024). Investigation of the effect of Isparta pumice on the unconfined compressive strength and swelling pressure of clay. Advanced Engineering Science, 4, 113–119. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1568
  • Karakurt , A. B. ., & Ertuğrul , Özgür L. . (2023). Effect of rice husk ash addition on the consolidation characteristics of cohesive soils. Engineering Applications, 2(1), 7–15. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/848
There are 93 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Rituraj Jain 0000-0002-5532-1245

Sitesh Kumar Singh 0000-0002-7108-0808

Damodharan Palaniappan 0009-0003-0721-3068

Kumar Parmar 0000-0002-2502-5680

Premavathi T 0009-0003-0172-2021

Project Number NA
Early Pub Date January 20, 2025
Publication Date
Submission Date November 8, 2024
Acceptance Date December 21, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Jain, R., Singh, S. K., Palaniappan, D., Parmar, K., et al. (n.d.). Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. Turkish Journal of Engineering, 9(2), 354-377. https://doi.org/10.31127/tuje.1581564
AMA Jain R, Singh SK, Palaniappan D, Parmar K, T P. Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. TUJE. 9(2):354-377. doi:10.31127/tuje.1581564
Chicago Jain, Rituraj, Sitesh Kumar Singh, Damodharan Palaniappan, Kumar Parmar, and Premavathi T. “Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning”. Turkish Journal of Engineering 9, no. 2 n.d.: 354-77. https://doi.org/10.31127/tuje.1581564.
EndNote Jain R, Singh SK, Palaniappan D, Parmar K, T P Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. Turkish Journal of Engineering 9 2 354–377.
IEEE R. Jain, S. K. Singh, D. Palaniappan, K. Parmar, and P. T, “Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning”, TUJE, vol. 9, no. 2, pp. 354–377, doi: 10.31127/tuje.1581564.
ISNAD Jain, Rituraj et al. “Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning”. Turkish Journal of Engineering 9/2 (n.d.), 354-377. https://doi.org/10.31127/tuje.1581564.
JAMA Jain R, Singh SK, Palaniappan D, Parmar K, T P. Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. TUJE.;9:354–377.
MLA Jain, Rituraj et al. “Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning”. Turkish Journal of Engineering, vol. 9, no. 2, pp. 354-77, doi:10.31127/tuje.1581564.
Vancouver Jain R, Singh SK, Palaniappan D, Parmar K, T P. Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. TUJE. 9(2):354-77.
Flag Counter