Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 3, 471 - 478
https://doi.org/10.31127/tuje.1542632

Abstract

References

  • Gräf, E. L. (2011). Automobile emissions control. Environmental Progress & Sustainable Energy, 30(2), 175–184. https://doi.org/10.1002/ep.10462
  • Li, Y., Armor, J. N., He, H., Lunsford, J. H., Ribeiro, F., & White, M. G. (2009). Selective catalytic reduction of NOx with ammonia over zeolite catalysts. Applied Catalysis B: Environmental, 90(3–4), 121–139. https://doi.org/10.1016/j.apcatb.2009.03.010
  • Roy, S., & Baiker, A. (2009). Selective catalytic reduction of NOx by hydrocarbons. Chemical Reviews, 109(10), 4054–4091. https://doi.org/10.1021/cr800438k
  • Keener, J. C. (2006). NOx emission regulations and reduction strategies. Journal of Environmental Management, 80(1), 23–33. https://doi.org/10.1016/j.jenvman.2005.08.013
  • Johnson, M. M. (2000). Zeolite catalysis in the automotive industry. Catalysis Today, 62(1–2), 101–114. https://doi.org/10.1016/S0920-5861(00)00441-7
  • Yang, T. (1998). Characterization of ZSM-5 zeolites. Journal of Catalysis, 178(1), 143–151. https://doi.org/10.1006/jcat.1998.2151
  • Çetinkaya, S. (2024). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.1016/S1387-1811(01)00362-2
  • Lónyi, F., & Valyon, J. (2000). Zeolite-based catalysts for NOx removal. Microporous and Mesoporous Materials, 35–36, 215–229. https://doi.org/10.1016/S1387-1811(99)00214-5
  • Nakashiro, K., Iwamoto, M., & Yahiro, H. (2000). Copper-zeolite catalysts for NOx reduction. Applied Catalysis B: Environmental, 25(2–3), 75–85. https://doi.org/10.1016/S0926-3373(99)00132-8
  • Raine, R. (2009). CRDI technology in modern diesel engines. Automotive Engineering International, 117(5), 65–71.
  • Carlson, T. R. (2000). NOx formation in diesel engines. Combustion and Flame, 120(4), 339–352. https://doi.org/10.1016/S0010-2180(99)00091-2
  • 12. • Xie, H., Wu, D., Zhang, X., & Wang, Z. (1999). Synthesis of zeolites from coal fly ash. Microporous and Mesoporous Materials, 32(1–2), 65–73. https://doi.org/10.1016/S1387-1811(99)00077-1[11] Carlson, T. R. (2000). NOx formation in diesel engines. Combustion and Flame, 120(4), 339-352.
  • Liu, S., Huang, H., Yan, Z., & Zhu, J. (2006). Emission reduction in diesel engines using zeolite-coated catalytic converters. Applied Energy, 83(1), 59–68. https://doi.org/10.1016/j.apenergy.2005.02.004
  • Chen, P., Zhang, L., Zhao, Z., & Wang, J. (2003). Hydrothermal synthesis of ZSM-5 zeolites. Materials Letters, 57(22–23), 3443–3449. https://doi.org/10.1016/S0167-577X(03)00013-5
  • Machida, K. (2004). Catalytic performance of Cu-ZSM-5 for NOx reduction. Catalysis Communications, 5(5), 277–281. https://doi.org/10.1016/j.catcom.2004.03.005
  • Lietti, L., Nova, I., Tronconi, E., Forzatti, P., & Baiker, A. (2006). Study on NOx reduction catalysts. Journal of Molecular Catalysis A: Chemical, 73(1–3), 117–127. https://doi.org/10.1016/j.molcata.2006.01.022
  • Dondur, V., Đukić, A., & Blagojević, M. (2006). Fe-ZSM-5 catalysts for environmental applications. Journal of Environmental Science and Health, Part A, 41(1), 131–143. https://doi.org/10.1080/10934520500374238
  • Corma, A. (2008). Zeolite catalysts in the automotive industry. Chemical Reviews, 95(3), 559–614. https://doi.org/10.1021/cr950039u
  • Das, A., Biswas, K., Pal, P., & Bhattacharya, S. (2011). Recycling of coal fly ash for zeolite synthesis. International Journal of Environmental Science & Technology, 8(3), 605–618. https://doi.org/10.1007/BF03326245
  • YalÇin, B. K., & Ipek, B. (2020). One-step synthesis of hierarchical [B]-ZSM-5 using cetyltrimethylammonium bromide as mesoporogen. Turkish Journal of Chemistry, 44(3), 841-858
  • Postrzednik, S., Zmudka, Z., & Ciesiolkiewicz, A. (2004). Basic aspects related to operation of engine catalytic converters. International Journal of Thermodynamics, 7(1), 9–13.
  • Selvanayagam, B. F., Palani, S., Gopi, P., Parthiban, G., Siranjeevi, R., & Jeyahar, P. S. (2023). Experimental investigation in performance evaluation of nano additives diesel blend using diesel engine. International Journal of Vehicle Structures & Systems (IJVSS, 15(1).
  • Gregg, S. J. (2009). Advanced catalysts for diesel emission control. Topics in Catalysis, 28(1–4), 125–136. https://doi.org/10.1023/A:1019116106618
  • Wichterle, B. (2007). Zeolites in automotive emission control. Topics in Catalysis, 42–43, 171–176. https://doi.org/10.1007/s11244-007-0294-7
  • Abdulwahid, M. M., Kurnaz, S., Türkben, A. K., Hayal, M. R., Elsayed, E. E., & Juraev, D. A. (2024). Inter-satellite optical wireless communication (Is-OWC) trends: a review, challenges and opportunities. Engineering Applications, 3(1), 1–15.
  • Basil, N., Ahammad, S. H., & Elsayed, E. E. (2024). Enhancing wireless subscriber performance through AODV routing protocol in simulated mobile Ad-hoc networks. Engineering Applications, 3(1), 16–26.
  • Yalçın, C., & Canlı, H. (2024). IP/Resistivity methods for Pb-Zn deposit exploration: A case study in Sudöşeği, (Simav-Kütahya, Türkiye). Engineering Applications, 3(1), 27–35
  • kgül, V., Görmüş, K. S., Kutoğlu, Ş. H., & Jin, S. (2024). Performance analysis and kinematic test of the BeiDou Navigation Satellite System (BDS) over coastal waters of Türkiye. Advanced Engineering Science, 4, 1–14.
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24.
  • Salehi, S. S., & Jafari, F. (2024). Evaluation of the worn texture of the region 4 in Tabriz, Iran, with an emphasis on increasing populatability. Advanced Engineering Science, 4, 25–34.
  • Sethuraman, N., & Karthikeyan, D. (2022). Investigation of emission reduction in CI engine by using CuCl2, NiCl2, MgCl2, and FeCl2 doped ZSM5 as catalyst. Materials Today: Proceedings, 62, 858–862.
  • Garba, J., Abd Wahid, S., Ahmad Hamdanı, M. S., Faruq Sadiq, T. (2024). Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. Turkish Journal of Engineering, 8(3), 469-482. https://doi.org/10.31127/tuje.1428763

Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction

Year 2025, Volume: 9 Issue: 3, 471 - 478
https://doi.org/10.31127/tuje.1542632

Abstract

Nowadays, light duty diesel engines and lean burn petrol engines are getting much attention due to improved fuel economy. The present conventional catalytic converter controls effectively the levels of carbon monoxide and hydrocarbon, but it displays poor conversion in harmful oxides of nitrogen emission under lean exhaust condition. But the automobile pollution control regulatory bodies tighten the emission level every year. Zeolite-based catalysts have received a lot of focus recently because of their strong activity and comparatively broad temperature window. In the present work, zeolite-like material and ZSM-5 like material are synthesized by alkali fusion followed by hydrothermal treatment from coal flyash. Cupric Chloride (CuCl2) and Ferric Chloride (FeCl3) are used as transition metals. These metals are incorporated separately into the zeolites by conventional liquid phase ion-exchange method. Cu-ZSM5 (In house). Fe-ZSM5 (Inhouse), Cu-ZSM5 (commercial). FeZSM5 (commercial). Emission tests are conducted on CRDI engine. Initially the engine is run without catalytic converter in five different load conditions In all the cases, the concentration of CO, HC, O2, CO2 and NO, are measured by AVL Di-gas analyzer. It is observed that commercial catalytic converters at 16 kW load condition, the NO, conversion efficiency is 70%, 65% and 35%; the CO conversion efficiency is 95%, 80% and 82% and HC conversion efficiency is 93%, 79% & 80% respectively. For diesel engine, Cu-ZSMS (IH) like material is more effective in low temperature application.

References

  • Gräf, E. L. (2011). Automobile emissions control. Environmental Progress & Sustainable Energy, 30(2), 175–184. https://doi.org/10.1002/ep.10462
  • Li, Y., Armor, J. N., He, H., Lunsford, J. H., Ribeiro, F., & White, M. G. (2009). Selective catalytic reduction of NOx with ammonia over zeolite catalysts. Applied Catalysis B: Environmental, 90(3–4), 121–139. https://doi.org/10.1016/j.apcatb.2009.03.010
  • Roy, S., & Baiker, A. (2009). Selective catalytic reduction of NOx by hydrocarbons. Chemical Reviews, 109(10), 4054–4091. https://doi.org/10.1021/cr800438k
  • Keener, J. C. (2006). NOx emission regulations and reduction strategies. Journal of Environmental Management, 80(1), 23–33. https://doi.org/10.1016/j.jenvman.2005.08.013
  • Johnson, M. M. (2000). Zeolite catalysis in the automotive industry. Catalysis Today, 62(1–2), 101–114. https://doi.org/10.1016/S0920-5861(00)00441-7
  • Yang, T. (1998). Characterization of ZSM-5 zeolites. Journal of Catalysis, 178(1), 143–151. https://doi.org/10.1006/jcat.1998.2151
  • Çetinkaya, S. (2024). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.1016/S1387-1811(01)00362-2
  • Lónyi, F., & Valyon, J. (2000). Zeolite-based catalysts for NOx removal. Microporous and Mesoporous Materials, 35–36, 215–229. https://doi.org/10.1016/S1387-1811(99)00214-5
  • Nakashiro, K., Iwamoto, M., & Yahiro, H. (2000). Copper-zeolite catalysts for NOx reduction. Applied Catalysis B: Environmental, 25(2–3), 75–85. https://doi.org/10.1016/S0926-3373(99)00132-8
  • Raine, R. (2009). CRDI technology in modern diesel engines. Automotive Engineering International, 117(5), 65–71.
  • Carlson, T. R. (2000). NOx formation in diesel engines. Combustion and Flame, 120(4), 339–352. https://doi.org/10.1016/S0010-2180(99)00091-2
  • 12. • Xie, H., Wu, D., Zhang, X., & Wang, Z. (1999). Synthesis of zeolites from coal fly ash. Microporous and Mesoporous Materials, 32(1–2), 65–73. https://doi.org/10.1016/S1387-1811(99)00077-1[11] Carlson, T. R. (2000). NOx formation in diesel engines. Combustion and Flame, 120(4), 339-352.
  • Liu, S., Huang, H., Yan, Z., & Zhu, J. (2006). Emission reduction in diesel engines using zeolite-coated catalytic converters. Applied Energy, 83(1), 59–68. https://doi.org/10.1016/j.apenergy.2005.02.004
  • Chen, P., Zhang, L., Zhao, Z., & Wang, J. (2003). Hydrothermal synthesis of ZSM-5 zeolites. Materials Letters, 57(22–23), 3443–3449. https://doi.org/10.1016/S0167-577X(03)00013-5
  • Machida, K. (2004). Catalytic performance of Cu-ZSM-5 for NOx reduction. Catalysis Communications, 5(5), 277–281. https://doi.org/10.1016/j.catcom.2004.03.005
  • Lietti, L., Nova, I., Tronconi, E., Forzatti, P., & Baiker, A. (2006). Study on NOx reduction catalysts. Journal of Molecular Catalysis A: Chemical, 73(1–3), 117–127. https://doi.org/10.1016/j.molcata.2006.01.022
  • Dondur, V., Đukić, A., & Blagojević, M. (2006). Fe-ZSM-5 catalysts for environmental applications. Journal of Environmental Science and Health, Part A, 41(1), 131–143. https://doi.org/10.1080/10934520500374238
  • Corma, A. (2008). Zeolite catalysts in the automotive industry. Chemical Reviews, 95(3), 559–614. https://doi.org/10.1021/cr950039u
  • Das, A., Biswas, K., Pal, P., & Bhattacharya, S. (2011). Recycling of coal fly ash for zeolite synthesis. International Journal of Environmental Science & Technology, 8(3), 605–618. https://doi.org/10.1007/BF03326245
  • YalÇin, B. K., & Ipek, B. (2020). One-step synthesis of hierarchical [B]-ZSM-5 using cetyltrimethylammonium bromide as mesoporogen. Turkish Journal of Chemistry, 44(3), 841-858
  • Postrzednik, S., Zmudka, Z., & Ciesiolkiewicz, A. (2004). Basic aspects related to operation of engine catalytic converters. International Journal of Thermodynamics, 7(1), 9–13.
  • Selvanayagam, B. F., Palani, S., Gopi, P., Parthiban, G., Siranjeevi, R., & Jeyahar, P. S. (2023). Experimental investigation in performance evaluation of nano additives diesel blend using diesel engine. International Journal of Vehicle Structures & Systems (IJVSS, 15(1).
  • Gregg, S. J. (2009). Advanced catalysts for diesel emission control. Topics in Catalysis, 28(1–4), 125–136. https://doi.org/10.1023/A:1019116106618
  • Wichterle, B. (2007). Zeolites in automotive emission control. Topics in Catalysis, 42–43, 171–176. https://doi.org/10.1007/s11244-007-0294-7
  • Abdulwahid, M. M., Kurnaz, S., Türkben, A. K., Hayal, M. R., Elsayed, E. E., & Juraev, D. A. (2024). Inter-satellite optical wireless communication (Is-OWC) trends: a review, challenges and opportunities. Engineering Applications, 3(1), 1–15.
  • Basil, N., Ahammad, S. H., & Elsayed, E. E. (2024). Enhancing wireless subscriber performance through AODV routing protocol in simulated mobile Ad-hoc networks. Engineering Applications, 3(1), 16–26.
  • Yalçın, C., & Canlı, H. (2024). IP/Resistivity methods for Pb-Zn deposit exploration: A case study in Sudöşeği, (Simav-Kütahya, Türkiye). Engineering Applications, 3(1), 27–35
  • kgül, V., Görmüş, K. S., Kutoğlu, Ş. H., & Jin, S. (2024). Performance analysis and kinematic test of the BeiDou Navigation Satellite System (BDS) over coastal waters of Türkiye. Advanced Engineering Science, 4, 1–14.
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24.
  • Salehi, S. S., & Jafari, F. (2024). Evaluation of the worn texture of the region 4 in Tabriz, Iran, with an emphasis on increasing populatability. Advanced Engineering Science, 4, 25–34.
  • Sethuraman, N., & Karthikeyan, D. (2022). Investigation of emission reduction in CI engine by using CuCl2, NiCl2, MgCl2, and FeCl2 doped ZSM5 as catalyst. Materials Today: Proceedings, 62, 858–862.
  • Garba, J., Abd Wahid, S., Ahmad Hamdanı, M. S., Faruq Sadiq, T. (2024). Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. Turkish Journal of Engineering, 8(3), 469-482. https://doi.org/10.31127/tuje.1428763
There are 32 citations in total.

Details

Primary Language English
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer
Journal Section Articles
Authors

Sethuraman N 0000-0001-7919-3033

Karthikeyan Duraisamy 0000-0001-8832-8825

Sarangapani Palani 0000-0002-8684-7557

Early Pub Date January 23, 2025
Publication Date
Submission Date September 3, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA N, S., Duraisamy, K., & Palani, S. (2025). Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction. Turkish Journal of Engineering, 9(3), 471-478. https://doi.org/10.31127/tuje.1542632
AMA N S, Duraisamy K, Palani S. Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction. TUJE. January 2025;9(3):471-478. doi:10.31127/tuje.1542632
Chicago N, Sethuraman, Karthikeyan Duraisamy, and Sarangapani Palani. “Investigating CRDI Engine Performance With ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction”. Turkish Journal of Engineering 9, no. 3 (January 2025): 471-78. https://doi.org/10.31127/tuje.1542632.
EndNote N S, Duraisamy K, Palani S (January 1, 2025) Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction. Turkish Journal of Engineering 9 3 471–478.
IEEE S. N, K. Duraisamy, and S. Palani, “Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction”, TUJE, vol. 9, no. 3, pp. 471–478, 2025, doi: 10.31127/tuje.1542632.
ISNAD N, Sethuraman et al. “Investigating CRDI Engine Performance With ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction”. Turkish Journal of Engineering 9/3 (January 2025), 471-478. https://doi.org/10.31127/tuje.1542632.
JAMA N S, Duraisamy K, Palani S. Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction. TUJE. 2025;9:471–478.
MLA N, Sethuraman et al. “Investigating CRDI Engine Performance With ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction”. Turkish Journal of Engineering, vol. 9, no. 3, 2025, pp. 471-8, doi:10.31127/tuje.1542632.
Vancouver N S, Duraisamy K, Palani S. Investigating CRDI Engine Performance with ZSM-5 Coated Catalytic Converters for Exhaust Emission Reduction. TUJE. 2025;9(3):471-8.
Flag Counter