Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 3, 417 - 424
https://doi.org/10.31127/tuje.1561759

Abstract

References

  • Parmar, P., Trivedi, D., Randhesiya, K., & Shingala, R. (2021). Modeling and analysis of different chevron nozzle for noise reduction. International Journal of Engineering Research & Technology (IJERT), 10(1), January 2021.
  • Akbarali, I. M., & Periyasamy, S. (2020). Design and analysis of nozzle for reducing noise pollution. IOSR Journal of Mechanical and Civil Engineering, 17, 6–12.
  • Selvam, M. A. J., Sambandam, P., & Sujeesh, K. J. (2021). Investigation of performance and emission characteristics of single-cylinder DI diesel engine with plastic pyrolysis oil and diethyl ether blends. International Journal of Ambient Energy.
  • Raja, K., & Selvam, M. A. J. (2019). Experimental investigation of four-stroke single-cylinder SI engine by modified intake manifold using computational fluid dynamics. International Journal of Ambient Energy.
  • Zhu, M., Wang, L., Wei, F., & Du, Y. (2018). Design and optimization of the three-dimensional supersonic asymmetric truncated nozzle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(15), 2923–2935.
  • Kim, S. J., Moon, K., Jung, H., & Choi, J. (2020). 2D exhaust nozzle with multiple composite layers for IR signature suppression. Results in Physics, 19, 103395.
  • Ishii, T., Yamamoto, K., Tanaka, H., & Suzuki, S. (2019). Jet noise reduction of turbofan engine by notched nozzle. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 259(4), Institute of Noise Control Engineering.
  • Vadla, P., & Sreekanth, S. (2018). Turbojet engine nozzle design optimization to reduce noise. IOP Conference Series: Materials Science and Engineering, 455(1).
  • Mishra, A. A., & Iaccarino, G. (2017). Uncertainty estimation for Reynolds-averaged Navier–Stokes predictions of high-speed aircraft nozzle jets. AIAA Journal, 55(11), 3999–4004.
  • Li, L., Jiang, Z., Chen, X., & Wu, T. (2017). Numerical experiment of tip-jet ducted fans with various nozzles. 53rd AIAA/SAE/ASEE Joint Propulsion Conference.
  • Clarke, J. (1976). Gas Dynamics, Volumes 1 and 2. Wiley; 772 pp. Journal of Fluid Mechanics, 87(4), 789–792.
  • Turkyilmazoglu, M. (2015). Parabolic partial differential equations with nonlocal initial and boundary values. International Journal of Computational Methods, 12(5), 1550024.
  • Kodavanla, B., Shiva, U., & Goud, M. R. (2017). Aircraft noise reduction and control system by the k−epsilon turbulence model.
  • Yang, H., Lin, Z., Zhao, M., & Chen, J. (2021). Cavitation suppression in the nozzle-flapper valves of the aircraft hydraulic system using triangular nozzle exits. Aerospace Science and Technology, 112, 106598.
  • Filippone, A. (2014). Aircraft noise prediction. Progress in Aerospace Sciences, 68, 27–63.
  • Leylekian, L., Lebrun, M., & Lempereur, P. (2014). An overview of aircraft noise reduction technologies. Aerospace Lab, 6, p-1.
  • Thomas, R. H., Lee, E., & Kumar, A. (2017). Aircraft noise reduction technology roadmap toward achieving the NASA 2035 goal. 23rd AIAA/CEAS Aeroacoustics Conference.
  • Filippone, A. (2017). Options for aircraft noise reduction on arrival and landing. Aerospace Science and Technology, 60, 31–38.
  • Kirubadurai, B., Kanagaraja, K., & Jegadeeswari, G. (2021). Analysis of knocking characteristic in dual-fuel engine—the effects on diethyl ether. INCAS Bulletin, 13(2), 83–90.
  • Sumendran, J., Shekar, K. R. C., Jegadeeswari, G., & Kirubadurai, B. (2020). Design of annular combustion chamber with different types of swirl to perform pressure drop. International Journal of Scientific and Technology Research, 9(2), 1972–1975.
  • Vishnu, J., & Rathakrishnan, E. (2004). Acoustic characteristics of supersonic jets from grooved nozzles. Journal of Propulsion and Power, 20, 520–526.
  • Reba, R., Narayanan, S., & Colonius, T. (2013). Wave-packet models for large-scale mixing noise. International Journal of Aeroacoustics, 9(4–5), 533.
  • Grizzi, S., & Camussi, R. (2011). Experimental investigation of the near-field noise generated by a compressible round jet. Journal of Physics: Conference Series, 318, 092003.
  • Camussi, R., & Meloni, S. (2021). On the application of wavelet transform in jet aeroacoustics. Fluids, 6, 299.
  • Hixon, R., Wu, J., Nallasamy, R., Sawyer, S., & Dyson, R. (2004). Comparison of numerical schemes for a realistic computational aeroacoustics benchmark problem. International Journal of Aeroacoustics, 3.
  • Raman, G. (1999). Coupling of twin supersonic jets of complex geometry. Journal of Aircraft, 36, 743–749.
  • Raman, G., Panickar, P., & Chelliah, K. (2012). Aeroacoustics of twin supersonic jets: A review. International Journal of Aeroacoustics, 11(7–8), 957–984.
  • Nonomura, T., Ozawa, Y., & Abe, Y. (2021). Computational study on aeroacoustic fields of a transitional supersonic jet. Journal of the Acoustical Society of America, 149, 4484.
  • Harčarik, T., Bocko, J., & Masláková, K. (2012). Frequency analysis of acoustic signal using the fast Fourier transformation in MATLAB. Procedia Engineering, 48, 199–204.
  • Das, S. K., & Saha, A. (2024). Phase velocity of love waves as function of heterogeneity and void parameter. Turkish Journal of Engineering, 8(4), 603-610.
  • Bakır, H. (2024). Optimal power flow analysis with circulatory system-based optimization algorithm. Turkish Journal of Engineering, 8(1), 92-106.
  • Abdulkerim, S. (2024). Investigating best algorithms for structural topology optimization. Turkish Journal of Engineering, 8(1), 116-126.
  • Juraev, D. A., Shokri, A., Agarwal, P., Elsayed, E. E., & Nurhidayat, I. (2023). Approximate solutions of the Helmholtz equation on the plane. Engineering Applications, 2(3), 291–303.
  • Juraev, D. A., Agarwal, P., Elsayed, E. E., & Targyn, N. (2024). Helmholtz equations and their applications in solving physical problems. Advanced Engineering Science, 4, 54–64.
  • Juraev, D. A. . (2023). Fundamental solution for the Helmholtz equation . Engineering Applications, 2(2), 164–175.
  • Harizaj, M., & Bisha, I. (2023). A proposed power control solution for industrial application in decentralized energy production. Engineering Applications, 2(1), 16-25
  • Karaca E.O., Tanyildizi,M. & Bozkurt,N. (2022). Investigation of seismic base isolation systems and their properties. Engineering Applications, 1(1), 63-71.
  • Çimen, Ö., & Keskin, S.N.(2024). Investigation of the effect of Isparta pumice on theunconfined compressive strength and swelling pressure of clay. Advanced Engineering Science, 4, 113-119.
  • 39. Yalçın, C., & Belgin, Ö. (2023). A multivariate statistical assessment of Vein-type U-Th enrichment in Arıklı İgnimbrites. Advanced Engineering Science, 3, 55-61
  • Yuksek, G., Muratoglu, Y., & Alkaya, A.(2022). Modelling of supercapacitor by using parameter estimation method for energy storage system.Advanced Engineering Science, 2, 67-73

Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy

Year 2025, Volume: 9 Issue: 3, 417 - 424
https://doi.org/10.31127/tuje.1561759

Abstract

One of the practical components that can be found in aircraft engines, the Delaval nozzle, works to improve the aircraft's performance in terms of its stability and its capacity to manoeuvre at different speeds of operation. This research concentrates on the acoustic behaviors shown by this nozzle during the transition from low rate to sonic speed. The modification of the nozzle tip at various degrees of inclination on the transition velocity is the procedure used to minimize the amount of acoustic energy emitted. The acoustic behavior is analyzed based on the FW-H acoustics model utilized, and the optimization problem is solved using the practical eddy simulation approach in CFD. The acoustic Power, measured in dB, is estimated at various angles on the nozzle tip, and the performance of the Delaval nozzle is used to show how the redesigned nozzle tip affects the nozzle's acoustic behavior.

References

  • Parmar, P., Trivedi, D., Randhesiya, K., & Shingala, R. (2021). Modeling and analysis of different chevron nozzle for noise reduction. International Journal of Engineering Research & Technology (IJERT), 10(1), January 2021.
  • Akbarali, I. M., & Periyasamy, S. (2020). Design and analysis of nozzle for reducing noise pollution. IOSR Journal of Mechanical and Civil Engineering, 17, 6–12.
  • Selvam, M. A. J., Sambandam, P., & Sujeesh, K. J. (2021). Investigation of performance and emission characteristics of single-cylinder DI diesel engine with plastic pyrolysis oil and diethyl ether blends. International Journal of Ambient Energy.
  • Raja, K., & Selvam, M. A. J. (2019). Experimental investigation of four-stroke single-cylinder SI engine by modified intake manifold using computational fluid dynamics. International Journal of Ambient Energy.
  • Zhu, M., Wang, L., Wei, F., & Du, Y. (2018). Design and optimization of the three-dimensional supersonic asymmetric truncated nozzle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(15), 2923–2935.
  • Kim, S. J., Moon, K., Jung, H., & Choi, J. (2020). 2D exhaust nozzle with multiple composite layers for IR signature suppression. Results in Physics, 19, 103395.
  • Ishii, T., Yamamoto, K., Tanaka, H., & Suzuki, S. (2019). Jet noise reduction of turbofan engine by notched nozzle. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 259(4), Institute of Noise Control Engineering.
  • Vadla, P., & Sreekanth, S. (2018). Turbojet engine nozzle design optimization to reduce noise. IOP Conference Series: Materials Science and Engineering, 455(1).
  • Mishra, A. A., & Iaccarino, G. (2017). Uncertainty estimation for Reynolds-averaged Navier–Stokes predictions of high-speed aircraft nozzle jets. AIAA Journal, 55(11), 3999–4004.
  • Li, L., Jiang, Z., Chen, X., & Wu, T. (2017). Numerical experiment of tip-jet ducted fans with various nozzles. 53rd AIAA/SAE/ASEE Joint Propulsion Conference.
  • Clarke, J. (1976). Gas Dynamics, Volumes 1 and 2. Wiley; 772 pp. Journal of Fluid Mechanics, 87(4), 789–792.
  • Turkyilmazoglu, M. (2015). Parabolic partial differential equations with nonlocal initial and boundary values. International Journal of Computational Methods, 12(5), 1550024.
  • Kodavanla, B., Shiva, U., & Goud, M. R. (2017). Aircraft noise reduction and control system by the k−epsilon turbulence model.
  • Yang, H., Lin, Z., Zhao, M., & Chen, J. (2021). Cavitation suppression in the nozzle-flapper valves of the aircraft hydraulic system using triangular nozzle exits. Aerospace Science and Technology, 112, 106598.
  • Filippone, A. (2014). Aircraft noise prediction. Progress in Aerospace Sciences, 68, 27–63.
  • Leylekian, L., Lebrun, M., & Lempereur, P. (2014). An overview of aircraft noise reduction technologies. Aerospace Lab, 6, p-1.
  • Thomas, R. H., Lee, E., & Kumar, A. (2017). Aircraft noise reduction technology roadmap toward achieving the NASA 2035 goal. 23rd AIAA/CEAS Aeroacoustics Conference.
  • Filippone, A. (2017). Options for aircraft noise reduction on arrival and landing. Aerospace Science and Technology, 60, 31–38.
  • Kirubadurai, B., Kanagaraja, K., & Jegadeeswari, G. (2021). Analysis of knocking characteristic in dual-fuel engine—the effects on diethyl ether. INCAS Bulletin, 13(2), 83–90.
  • Sumendran, J., Shekar, K. R. C., Jegadeeswari, G., & Kirubadurai, B. (2020). Design of annular combustion chamber with different types of swirl to perform pressure drop. International Journal of Scientific and Technology Research, 9(2), 1972–1975.
  • Vishnu, J., & Rathakrishnan, E. (2004). Acoustic characteristics of supersonic jets from grooved nozzles. Journal of Propulsion and Power, 20, 520–526.
  • Reba, R., Narayanan, S., & Colonius, T. (2013). Wave-packet models for large-scale mixing noise. International Journal of Aeroacoustics, 9(4–5), 533.
  • Grizzi, S., & Camussi, R. (2011). Experimental investigation of the near-field noise generated by a compressible round jet. Journal of Physics: Conference Series, 318, 092003.
  • Camussi, R., & Meloni, S. (2021). On the application of wavelet transform in jet aeroacoustics. Fluids, 6, 299.
  • Hixon, R., Wu, J., Nallasamy, R., Sawyer, S., & Dyson, R. (2004). Comparison of numerical schemes for a realistic computational aeroacoustics benchmark problem. International Journal of Aeroacoustics, 3.
  • Raman, G. (1999). Coupling of twin supersonic jets of complex geometry. Journal of Aircraft, 36, 743–749.
  • Raman, G., Panickar, P., & Chelliah, K. (2012). Aeroacoustics of twin supersonic jets: A review. International Journal of Aeroacoustics, 11(7–8), 957–984.
  • Nonomura, T., Ozawa, Y., & Abe, Y. (2021). Computational study on aeroacoustic fields of a transitional supersonic jet. Journal of the Acoustical Society of America, 149, 4484.
  • Harčarik, T., Bocko, J., & Masláková, K. (2012). Frequency analysis of acoustic signal using the fast Fourier transformation in MATLAB. Procedia Engineering, 48, 199–204.
  • Das, S. K., & Saha, A. (2024). Phase velocity of love waves as function of heterogeneity and void parameter. Turkish Journal of Engineering, 8(4), 603-610.
  • Bakır, H. (2024). Optimal power flow analysis with circulatory system-based optimization algorithm. Turkish Journal of Engineering, 8(1), 92-106.
  • Abdulkerim, S. (2024). Investigating best algorithms for structural topology optimization. Turkish Journal of Engineering, 8(1), 116-126.
  • Juraev, D. A., Shokri, A., Agarwal, P., Elsayed, E. E., & Nurhidayat, I. (2023). Approximate solutions of the Helmholtz equation on the plane. Engineering Applications, 2(3), 291–303.
  • Juraev, D. A., Agarwal, P., Elsayed, E. E., & Targyn, N. (2024). Helmholtz equations and their applications in solving physical problems. Advanced Engineering Science, 4, 54–64.
  • Juraev, D. A. . (2023). Fundamental solution for the Helmholtz equation . Engineering Applications, 2(2), 164–175.
  • Harizaj, M., & Bisha, I. (2023). A proposed power control solution for industrial application in decentralized energy production. Engineering Applications, 2(1), 16-25
  • Karaca E.O., Tanyildizi,M. & Bozkurt,N. (2022). Investigation of seismic base isolation systems and their properties. Engineering Applications, 1(1), 63-71.
  • Çimen, Ö., & Keskin, S.N.(2024). Investigation of the effect of Isparta pumice on theunconfined compressive strength and swelling pressure of clay. Advanced Engineering Science, 4, 113-119.
  • 39. Yalçın, C., & Belgin, Ö. (2023). A multivariate statistical assessment of Vein-type U-Th enrichment in Arıklı İgnimbrites. Advanced Engineering Science, 3, 55-61
  • Yuksek, G., Muratoglu, Y., & Alkaya, A.(2022). Modelling of supercapacitor by using parameter estimation method for energy storage system.Advanced Engineering Science, 2, 67-73
There are 40 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Kumaran T 0000-0002-7165-0954

Balaji Elangovan 0000-0002-2099-5389

Swetha S 0000-0002-7969-656X

Raja Kannan 0000-0002-9127-1601

Murugu Nachippan Nachiappan 0000-0003-1488-9894

Sarangapani Palani 0000-0002-8684-7557

Early Pub Date January 22, 2025
Publication Date
Submission Date October 5, 2024
Acceptance Date November 19, 2024
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA T, K., Elangovan, B., S, S., Kannan, R., et al. (2025). Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy. Turkish Journal of Engineering, 9(3), 417-424. https://doi.org/10.31127/tuje.1561759
AMA T K, Elangovan B, S S, Kannan R, Nachiappan MN, Palani S. Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy. TUJE. January 2025;9(3):417-424. doi:10.31127/tuje.1561759
Chicago T, Kumaran, Balaji Elangovan, Swetha S, Raja Kannan, Murugu Nachippan Nachiappan, and Sarangapani Palani. “Optimization of the Convergent-Divergent Nozzle Tip and Reducing the Acoustic Energy”. Turkish Journal of Engineering 9, no. 3 (January 2025): 417-24. https://doi.org/10.31127/tuje.1561759.
EndNote T K, Elangovan B, S S, Kannan R, Nachiappan MN, Palani S (January 1, 2025) Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy. Turkish Journal of Engineering 9 3 417–424.
IEEE K. T, B. Elangovan, S. S, R. Kannan, M. N. Nachiappan, and S. Palani, “Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy”, TUJE, vol. 9, no. 3, pp. 417–424, 2025, doi: 10.31127/tuje.1561759.
ISNAD T, Kumaran et al. “Optimization of the Convergent-Divergent Nozzle Tip and Reducing the Acoustic Energy”. Turkish Journal of Engineering 9/3 (January 2025), 417-424. https://doi.org/10.31127/tuje.1561759.
JAMA T K, Elangovan B, S S, Kannan R, Nachiappan MN, Palani S. Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy. TUJE. 2025;9:417–424.
MLA T, Kumaran et al. “Optimization of the Convergent-Divergent Nozzle Tip and Reducing the Acoustic Energy”. Turkish Journal of Engineering, vol. 9, no. 3, 2025, pp. 417-24, doi:10.31127/tuje.1561759.
Vancouver T K, Elangovan B, S S, Kannan R, Nachiappan MN, Palani S. Optimization of the convergent-divergent nozzle tip and reducing the acoustic energy. TUJE. 2025;9(3):417-24.
Flag Counter