Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 4, 801 - 810, 08.10.2025
https://doi.org/10.31127/tuje.1688064

Abstract

References

  • Motwani, A., Patil, P., Nagaria, V., Verma, S., & Ghane, S. (2022). Soil Analysis and Crop Recommendation using Machine Learning. International Conference for Advancement in Technology (ICONAT), 1–7. https://doi.org/10.1109/iconat53423.2022.9725901
  • Afzal, H., Amjad, M., Raza, A., Munir, K., Villar, S. G., Lopez, L. a. D., & Ashraf, I. (2025). Incorporating soil information with machine learning for crop recommendation to improve agricultural output. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-88676-z
  • Musanase, C., Vodacek, A., Hanyurwimfura, D., Uwitonze, A., & Kabandana, I. (2023). Data-Driven analysis and Machine Learning-Based crop and Fertilizer recommendation system for revolutionizing farming practices. Agriculture, 13(11), 2141. https://doi.org/10.3390/agriculture13112141
  • Dey, B., Ferdous, J., & Ahmed, R. (2024). Machine learning based recommendation of agricultural and horticultural crop farming in India under the regime of NPK, soil pH and three climatic variables. Heliyon, 10(3), e25112. https://doi.org/10.1016/j.heliyon.2024.e25112
  • Senapaty, M. K., Ray, A., & Padhy, N. (2024). A decision support system for crop recommendation using machine learning classification algorithms. Agriculture, 14(8), 1256. https://doi.org/10.3390/agriculture14081256
  • Garg, D., & Alam, M. (2023). An effective crop recommendation method using machine learning techniques. International Journal of Advanced Technology and Engineering Exploration, 10(102). 498. https://doi.org/10.19101/ijatee.2022.10100456
  • Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. https://doi.org/10.1016/j.jafr.2023.100880
  • Vandana, W. M., & Kavya, B. (2024). Soil Fertility Assessment and Crop Recommendation for Sustainable Farming using Machine Learning and Deep Learning. 4th International Conference on Data Engineering and Communication Systems (ICDECS), 1–3. https://doi.org/10.1109/icdecs59733.2023.10503113.
  • Modi, D., Sutagundar, A. V., Yalavigi, V., & Aravatagimath, A. (2021). Crop recommendation using machine learning algorithm. 5th International Conference on Information Systems and Computer Networks (ISCON), 1–5. https://doi.org/10.1109/iscon52037.2021.9702392
  • Jain, R., Bakare, Y. B., Pattanaik, B., Alaric, J. S., Balam, S. K., Ayele, T. B., & Nalagandla, R. (2023). Optimization of energy consumption in smart homes using firefly algorithm and deep neural networks. Sustainable Engineering and Innovation ISSN 2712-0562, 5(2), 161–176. https://doi.org/10.37868/sei.v5i2.id210.
  • Balam, S. K., Jain, R., Alaric, J. S., Pattanaik, B., & Ayele, T. B. (2023). Renewable Energy Integration of IoT Systems for Smart Grid Applications. 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), 374–379. https://doi.org/10.1109/icesc57686.2023.10193428.
  • Reddy, G. V., Reddy, M. V. K., Spandana, K., Subbarayudu, Y., Albawi, A., Chandrashekar, R., Singla, A., & Praveen, N. (2024). Precision farming practices with data-driven analysis and machine learning-based crop and fertiliser recommendation system. E3S Web of Conferences, 507, 01078. https://doi.org/10.1051/e3sconf/202450701078.
  • Thangammal, C. B., Nithissh, S. S., & Murugesh, K (2024). Soil Monitoring and Crop Recommendation System via IoT and Machine Learning. 11th International Conference on Advances in Computing and Communications (ICACC), 1–6. https://doi.org/10.1109/icacc63692.2024.10845746
  • Jayaraman, V., Parthasarathy, S., Lakshminarayanan, A. R., & Sridevi, S. (2021). Crop recommendation by analysing the soil nutrients using machine learning techniques: a study. In IFIP advances in information and communication technology, 15–26. https://doi.org/10.1007/978-3-030-92600-7_2
  • Bondre, D. A., & Mahagaonkar, S. (2019). Prediction Of Crop Yield and Fertilizer Recommendation Using Machine Learning Algorithms. International Journal of Engineering Applied Sciences and Technology, 04(05), 371–376. https://doi.org/10.33564/ijeast.2019.v04i05.055
  • Ajoodha, R., & Mufamadi, T. O. (2023). Crop recommendation using machine learning algorithms and soil attributes data. In Algorithms for intelligent systems, 31–41. https://doi.org/10.1007/978-981-19-7041-2_3.
  • Pande, S. M., Ramesh, P. K., Anmol, A., Aishwarya, B. R., Rohilla, K., & Shaurya, K. (2021). Crop Recommender System using machine learning approach. 6th International Conference on Computing Methodologies and Communication (ICCMC), 1066–1071. https://doi.org/10.1109/iccmc51019.2021.9418351.
  • Mavi, H., Upadhyay, S. K., Srivastava, N., Sharma, R., & Bhargava, R. (2024). Crop Recommendation System Based on Soil Quality and Environmental Factors Using Machine Learning. International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), 507–512. https://doi.org/10.1109/innocomp63224.2024.00089.
  • Parameswari, P., Rajathi, N., & Harshanaa, K. J. (2021). Machine learning approaches for Crop recommendation. International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 1–5. https://doi.org/10.1109/icaeca52838.2021.9675480.
  • Hossain, M. D., Kashem, M. A., & Mustary, S. (2023). IoT Based Smart Soil Fertilizer Monitoring And ML Based Crop Recommendation System. International Conference on Electrical, Computer and Communication Engineering, 1–6. https://doi.org/10.1109/ecce57851.2023.10100744
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126
  • Şahin, M. A., & Yakar, M. (2021). WebGIS technology and architectures. Advanced GIS, 1(1), 22-26.
  • Kayıran, H. F. (2022). The function of artificial intelligence and its sub-branches in the field of health. Engineering Applications, 1(2), 99–107
  • Nwafor, E. O., & Akintayo, F. O. (2024). Predicting Trip Purposes of Households in Makurdi Using Machine Learning: A Comparative Analysis of Decision Tree, CatBoost, and XGBoost Algorithms. Engineering Applications, 3(3), 260–274
  • Bhatnagar, S., Lakshmi, N., A, A., & Y, V. S. M. (2024). Development of a Crop Recommendation System Through the Use of Various Machine Learning Algorithms. Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), 1–6. https://doi.org/10.1109/ic-etite58242.2024.10493758.
  • Agrawal, N., Govil, H., & Kumar, T. (2025). Agricultural land suitability classification and crop suggestion using machine learning and spatial multicriteria decision analysis in semi-arid ecosystem. Environment Development and Sustainability. 27, 13689–13726. https://doi.org/10.1007/s10668-023-04440-1.
  • Jain, R., Bekele, S., Palaniappan, D., Parmar, K., & T, P. (2025). Employing deep convolutional neural networks for enhanced precision in potato and maize leaf disease detection and classification. Turkish Journal of Engineering, 9(2), 290–301. https://doi.org/10.31127/tuje.1581124.
  • Ather, D., Madan, S., Nayak, M., Tripathi, R., Kant, R., Kshatri, S. S., & Jain, R. (2022). Selection of smart manure composition for smart farming using artificial intelligence technique. Journal of Food Quality, 2022, 1–7. https://doi.org/10.1155/2022/4351825.
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı çizgisinin belirlenerek mülkiyet durumunun incelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40. https://doi.org/10.31127/tuje.650238.
  • Raji, A., Orimolade, J., & Ewetola, I. (2024). Design and implementation of internet of things (IoT) based scheme for testing loamy soil. Turkish Journal of Engineering. 9(2), 323-333. https://doi.org/10.31127/tuje.1553534.
  • Chakravarti, A., Rohilla, K., Singh, S. P., Singh, S. K., & Adeba, D. (2022). Estimation of crop water requirement for Bargi left bank canal command area-Jabalpur M.P. India. Energy Nexus, 6, 100068. https://doi.org/10.1016/j.nexus.2022.100068.
  • Archana, U., Sharma, S., Singh, S. K., R, S., P, S., & Babu, T. H. (2023). Analysis Of Concrete Cracks and Fatigue In Smart Cities Using Yolov3. International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, 1–6. https://doi.org/10.1109/rmkmate59243.2023.10368774.
  • Hyder, U., & Talpur, M. R. H. (2024). Detection of cotton leaf disease with machine learning model. Turkish Journal of Engineering, 8(2), 380–393. https://doi.org/10.31127/tuje.1406755.
  • Başarslan, M. S., & Kayaalp, F. (2024). Sentiment analysis of coronavirus data with ensemble and machine learning methods. Turkish Journal of Engineering, 8(2), 175-185. https://doi.org/10.31127/tuje.1352481

Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture

Year 2025, Volume: 9 Issue: 4, 801 - 810, 08.10.2025
https://doi.org/10.31127/tuje.1688064

Abstract

The use of machine learning (ML) in agriculture has paved new avenues to improve decision making, especially in crop choice. The current research offers a data-driven crop recommendation system using a machine learning approach based on key soil and environmental factors—i.e., nitrogen (N), phosphorus (P), potassium (K), pH, temperature, humidity, and rainfall. A dataset of 2,200 soil records was processed using exploratory data analysis (EDA), normalization, and model training with algorithms such as Random Forest, Logistic Regression, and Gradient Boosting. Of these, Random Forest provided the best test accuracy of 99.32%, with high predictive ability and interpretability via feature importance measures. Violin and boxplots showed distinct feature separability among crop types, particularly in variables such as rainfall, temperature, and NPK concentrations, confirming the model's classification effectiveness. The practicability of the system is in its possible incorporation in IoT-based soil monitoring devices and cell advisory apps, delivering real-time, location-specific crop advice. This strategy enables farmers to make informed decisions, minimizes fertilizer waste, and promotes sustainable farming practices. The suggested system not only showcases technical strength but also fits well within the overall vision of smart farming and precision agriculture.

References

  • Motwani, A., Patil, P., Nagaria, V., Verma, S., & Ghane, S. (2022). Soil Analysis and Crop Recommendation using Machine Learning. International Conference for Advancement in Technology (ICONAT), 1–7. https://doi.org/10.1109/iconat53423.2022.9725901
  • Afzal, H., Amjad, M., Raza, A., Munir, K., Villar, S. G., Lopez, L. a. D., & Ashraf, I. (2025). Incorporating soil information with machine learning for crop recommendation to improve agricultural output. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-88676-z
  • Musanase, C., Vodacek, A., Hanyurwimfura, D., Uwitonze, A., & Kabandana, I. (2023). Data-Driven analysis and Machine Learning-Based crop and Fertilizer recommendation system for revolutionizing farming practices. Agriculture, 13(11), 2141. https://doi.org/10.3390/agriculture13112141
  • Dey, B., Ferdous, J., & Ahmed, R. (2024). Machine learning based recommendation of agricultural and horticultural crop farming in India under the regime of NPK, soil pH and three climatic variables. Heliyon, 10(3), e25112. https://doi.org/10.1016/j.heliyon.2024.e25112
  • Senapaty, M. K., Ray, A., & Padhy, N. (2024). A decision support system for crop recommendation using machine learning classification algorithms. Agriculture, 14(8), 1256. https://doi.org/10.3390/agriculture14081256
  • Garg, D., & Alam, M. (2023). An effective crop recommendation method using machine learning techniques. International Journal of Advanced Technology and Engineering Exploration, 10(102). 498. https://doi.org/10.19101/ijatee.2022.10100456
  • Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. https://doi.org/10.1016/j.jafr.2023.100880
  • Vandana, W. M., & Kavya, B. (2024). Soil Fertility Assessment and Crop Recommendation for Sustainable Farming using Machine Learning and Deep Learning. 4th International Conference on Data Engineering and Communication Systems (ICDECS), 1–3. https://doi.org/10.1109/icdecs59733.2023.10503113.
  • Modi, D., Sutagundar, A. V., Yalavigi, V., & Aravatagimath, A. (2021). Crop recommendation using machine learning algorithm. 5th International Conference on Information Systems and Computer Networks (ISCON), 1–5. https://doi.org/10.1109/iscon52037.2021.9702392
  • Jain, R., Bakare, Y. B., Pattanaik, B., Alaric, J. S., Balam, S. K., Ayele, T. B., & Nalagandla, R. (2023). Optimization of energy consumption in smart homes using firefly algorithm and deep neural networks. Sustainable Engineering and Innovation ISSN 2712-0562, 5(2), 161–176. https://doi.org/10.37868/sei.v5i2.id210.
  • Balam, S. K., Jain, R., Alaric, J. S., Pattanaik, B., & Ayele, T. B. (2023). Renewable Energy Integration of IoT Systems for Smart Grid Applications. 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), 374–379. https://doi.org/10.1109/icesc57686.2023.10193428.
  • Reddy, G. V., Reddy, M. V. K., Spandana, K., Subbarayudu, Y., Albawi, A., Chandrashekar, R., Singla, A., & Praveen, N. (2024). Precision farming practices with data-driven analysis and machine learning-based crop and fertiliser recommendation system. E3S Web of Conferences, 507, 01078. https://doi.org/10.1051/e3sconf/202450701078.
  • Thangammal, C. B., Nithissh, S. S., & Murugesh, K (2024). Soil Monitoring and Crop Recommendation System via IoT and Machine Learning. 11th International Conference on Advances in Computing and Communications (ICACC), 1–6. https://doi.org/10.1109/icacc63692.2024.10845746
  • Jayaraman, V., Parthasarathy, S., Lakshminarayanan, A. R., & Sridevi, S. (2021). Crop recommendation by analysing the soil nutrients using machine learning techniques: a study. In IFIP advances in information and communication technology, 15–26. https://doi.org/10.1007/978-3-030-92600-7_2
  • Bondre, D. A., & Mahagaonkar, S. (2019). Prediction Of Crop Yield and Fertilizer Recommendation Using Machine Learning Algorithms. International Journal of Engineering Applied Sciences and Technology, 04(05), 371–376. https://doi.org/10.33564/ijeast.2019.v04i05.055
  • Ajoodha, R., & Mufamadi, T. O. (2023). Crop recommendation using machine learning algorithms and soil attributes data. In Algorithms for intelligent systems, 31–41. https://doi.org/10.1007/978-981-19-7041-2_3.
  • Pande, S. M., Ramesh, P. K., Anmol, A., Aishwarya, B. R., Rohilla, K., & Shaurya, K. (2021). Crop Recommender System using machine learning approach. 6th International Conference on Computing Methodologies and Communication (ICCMC), 1066–1071. https://doi.org/10.1109/iccmc51019.2021.9418351.
  • Mavi, H., Upadhyay, S. K., Srivastava, N., Sharma, R., & Bhargava, R. (2024). Crop Recommendation System Based on Soil Quality and Environmental Factors Using Machine Learning. International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), 507–512. https://doi.org/10.1109/innocomp63224.2024.00089.
  • Parameswari, P., Rajathi, N., & Harshanaa, K. J. (2021). Machine learning approaches for Crop recommendation. International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 1–5. https://doi.org/10.1109/icaeca52838.2021.9675480.
  • Hossain, M. D., Kashem, M. A., & Mustary, S. (2023). IoT Based Smart Soil Fertilizer Monitoring And ML Based Crop Recommendation System. International Conference on Electrical, Computer and Communication Engineering, 1–6. https://doi.org/10.1109/ecce57851.2023.10100744
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126
  • Şahin, M. A., & Yakar, M. (2021). WebGIS technology and architectures. Advanced GIS, 1(1), 22-26.
  • Kayıran, H. F. (2022). The function of artificial intelligence and its sub-branches in the field of health. Engineering Applications, 1(2), 99–107
  • Nwafor, E. O., & Akintayo, F. O. (2024). Predicting Trip Purposes of Households in Makurdi Using Machine Learning: A Comparative Analysis of Decision Tree, CatBoost, and XGBoost Algorithms. Engineering Applications, 3(3), 260–274
  • Bhatnagar, S., Lakshmi, N., A, A., & Y, V. S. M. (2024). Development of a Crop Recommendation System Through the Use of Various Machine Learning Algorithms. Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), 1–6. https://doi.org/10.1109/ic-etite58242.2024.10493758.
  • Agrawal, N., Govil, H., & Kumar, T. (2025). Agricultural land suitability classification and crop suggestion using machine learning and spatial multicriteria decision analysis in semi-arid ecosystem. Environment Development and Sustainability. 27, 13689–13726. https://doi.org/10.1007/s10668-023-04440-1.
  • Jain, R., Bekele, S., Palaniappan, D., Parmar, K., & T, P. (2025). Employing deep convolutional neural networks for enhanced precision in potato and maize leaf disease detection and classification. Turkish Journal of Engineering, 9(2), 290–301. https://doi.org/10.31127/tuje.1581124.
  • Ather, D., Madan, S., Nayak, M., Tripathi, R., Kant, R., Kshatri, S. S., & Jain, R. (2022). Selection of smart manure composition for smart farming using artificial intelligence technique. Journal of Food Quality, 2022, 1–7. https://doi.org/10.1155/2022/4351825.
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı çizgisinin belirlenerek mülkiyet durumunun incelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40. https://doi.org/10.31127/tuje.650238.
  • Raji, A., Orimolade, J., & Ewetola, I. (2024). Design and implementation of internet of things (IoT) based scheme for testing loamy soil. Turkish Journal of Engineering. 9(2), 323-333. https://doi.org/10.31127/tuje.1553534.
  • Chakravarti, A., Rohilla, K., Singh, S. P., Singh, S. K., & Adeba, D. (2022). Estimation of crop water requirement for Bargi left bank canal command area-Jabalpur M.P. India. Energy Nexus, 6, 100068. https://doi.org/10.1016/j.nexus.2022.100068.
  • Archana, U., Sharma, S., Singh, S. K., R, S., P, S., & Babu, T. H. (2023). Analysis Of Concrete Cracks and Fatigue In Smart Cities Using Yolov3. International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, 1–6. https://doi.org/10.1109/rmkmate59243.2023.10368774.
  • Hyder, U., & Talpur, M. R. H. (2024). Detection of cotton leaf disease with machine learning model. Turkish Journal of Engineering, 8(2), 380–393. https://doi.org/10.31127/tuje.1406755.
  • Başarslan, M. S., & Kayaalp, F. (2024). Sentiment analysis of coronavirus data with ensemble and machine learning methods. Turkish Journal of Engineering, 8(2), 175-185. https://doi.org/10.31127/tuje.1352481
There are 34 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Articles
Authors

Kamal Upreti 0000-0003-0665-530X

Jaspreet Singh 0000-0003-0819-8851

Bosco Paul Alapatt 0000-0002-2106-1836

Publication Date October 8, 2025
Submission Date May 1, 2025
Acceptance Date June 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Upreti, K., Singh, J., & Alapatt, B. P. (2025). Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture. Turkish Journal of Engineering, 9(4), 801-810. https://doi.org/10.31127/tuje.1688064
AMA Upreti K, Singh J, Alapatt BP. Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture. TUJE. October 2025;9(4):801-810. doi:10.31127/tuje.1688064
Chicago Upreti, Kamal, Jaspreet Singh, and Bosco Paul Alapatt. “Smart Farming With Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture”. Turkish Journal of Engineering 9, no. 4 (October 2025): 801-10. https://doi.org/10.31127/tuje.1688064.
EndNote Upreti K, Singh J, Alapatt BP (October 1, 2025) Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture. Turkish Journal of Engineering 9 4 801–810.
IEEE K. Upreti, J. Singh, and B. P. Alapatt, “Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture”, TUJE, vol. 9, no. 4, pp. 801–810, 2025, doi: 10.31127/tuje.1688064.
ISNAD Upreti, Kamal et al. “Smart Farming With Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture”. Turkish Journal of Engineering 9/4 (October2025), 801-810. https://doi.org/10.31127/tuje.1688064.
JAMA Upreti K, Singh J, Alapatt BP. Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture. TUJE. 2025;9:801–810.
MLA Upreti, Kamal et al. “Smart Farming With Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture”. Turkish Journal of Engineering, vol. 9, no. 4, 2025, pp. 801-10, doi:10.31127/tuje.1688064.
Vancouver Upreti K, Singh J, Alapatt BP. Smart Farming with Ensemble Learning: A Soil-Driven Crop Suggestion Model for Sustainable Agriculture. TUJE. 2025;9(4):801-10.
Flag Counter