Review
BibTex RIS Cite

Physicochemical Conversion Technologies of Biomass for Bioenergy Production

Year 2025, Volume: 9 Issue: 4, 643 - 660, 08.10.2025
https://doi.org/10.31127/tuje.1688455

Abstract

Global energy consumption has continued to escalate due to rising population, urbanization, and industrialization. The world energy landscape has been dominated by fossil-based (FB) energy sources with attendant rising dangerous emissions, worsening air quality, and deteriorating ecosystems. Meeting the energy demand will require the conversion of biomass and other waste materials into renewable energy, including bioenergy as a sustainable and eco-friendly alternative to the debilitating FB energy sources. This study explores the various physicochemical conversion technologies for biomass conversion to bioenergy. The conversion of biomass to bioenergy through various technologies such as hydrothermal conversion processes, supercritical fluid extraction, microwave-assisted conversion, solvent liquefaction, hydrogenation, and carbonization processes yield biooil, biocrude, hydrochar, biochar, hydrogen, syngas, chemicals, and other bioproducts. The review concludes that physicochemical conversion technologies are easy to achieve, cost-effective, require little or no pretreatment, and ensure the production of high energy density products. The deployment of physicochemical techniques for biomass conversion will reduce overreliance on FB energy sources, contribute to energy security, and environmental sustainability. Development of innovative reactor designs, use of nanocatalysts, optimization, and modelling of process parameters, incentivizing waste conversion, and dilution of sociocultural biases against waste utilization will assist in overcoming the challenges associated with physicochemical biomass conversion and escalate bioenergy production from biomass

References

  • Ritchie, H., Rosado, P., & Roser, M. (2025). Energy Production and Consumption. https://ourworldindata.org/energy-production-consumption
  • Share of global primary energy consumption by source. https://ourworldindata.org/grapher/global-primary-energy-share-inc-biomass?time=1880..latest
  • Ritchie,H., Rosado, P., & Roser, M. (2025). Greenhouse gas emissions. https://ourworldindata.org/greenhouse-gas-emissions
  • Statista. Global biomass primary energy supply 2000-2020. https://www.statista.com/statistics/481628/biomass-primary-energy-supply-worldwide/ UN. Sustainable development goals. https://www.un.org/sustainabledevelopment/energy/#:~:text=While%20progress%20has%20been%20made,and%20polluting%20fuels%20for%20cooking
  • Dominic, M., & Baidurah, S. (2022). Recent developments in biological processing technology for palm oil mill effluent treatment—a review. Biology, 11(4), 525. https://doi.org/10.3390/biology11040525
  • Dominic, D., & Baidurah, S. (2025). A review of biological processing technologies for palm oil mill waste treatment and simultaneous bioenergy production at laboratory scale, pilot scale and industrial scale applications with technoeconomic analysis. Energy Conversion and Management: X, 26, 100914. https://doi.org/10.1016/j.ecmx.2025.100914
  • Tshikovhi, A., & Motaung, T. E. (2023). Technologies and innovations for biomass energy production. Sustainability, 15(16), 12121. https://doi.org/10.3390/su151612121
  • Basak, B., Kumar, R., Bharadwaj, A. S., Kim, T. H., Kim, J. R., Jang, M., Oh, S. E., Roh, H. S., & Jeon, B.H. (2023). Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 369, 128413. https://doi.org/10.1016/j.biortech.2022.128413
  • Zhi Y., Jiang, G., Yang, W., Chen, Z., Duan, P., & Zhang, J. (2024). A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses. Fuel Processing Technology, 254, 107943. https://doi.org/10.1016/j.fuproc.2023.107943
  • Chai, Y. H., Yusup, S., Kadir, W. N. A., Wong, C. Y., Rosli, S. S., Ruslan, M. S. H., & Yiin, C. L. (2020). Valorization of tropical biomass waste by supercritical fluid extraction technology. Sustainability, 13(1), 233, 2020. https://doi.org/10.3390/su13010233
  • Usmani, Z., Sharma, M., Tripathi, M., Nizami, A. S., Gong, L., Nguyen, Q. D., & Gupta, V. K. (2023). Converting biowaste streams into energy–leveraging microwave assisted valorization technologies for enhanced conversion. Journal of the Energy Institute, 107, 101161. https://doi.org/10.1016/j.joei.2022.101161
  • Ming, H., Yang, X., Zheng, P., Zhang, Y., Jiang, H., & Zhang, L. (2024). Recent Advances of Solvent Effects in Biomass Liquefaction Conversion. Energies, 17(12), 2814. https://doi.org/10.3390/en17122814
  • Sreenavya, A., Ganesh, V., Venkatesha, N., & Sakthivel, A. (2024). Hydrogenation of biomass derived furfural using Ru-Ni-Mg–Al-hydrotalcite material. Biomass Conversion and Biorefinery, 14(3), 4325-4340. https://doi.org/10.1007/s13399-022-02641-8
  • Saleh, T. A. (2024). A review on the technologies for converting biomass into carbon-based materials: sustainability and economy. Bioresource Technology Reports, 25, 101771. https://doi.org/10.1016/j.biteb.2024.101771
  • Zhou, Y., Remón, J., Pang, X., Jiang, Z., Liu, H., & Ding, W. (2023). Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. Science of The Total Environment, 886, 163920. https://doi.org/10.1016/j.scitotenv.2023.163920
  • Soroush, S., Ronsse, F., Verberckmoes, A., Verpoort, F., Park, J., Wu, D., & Heynderickx, P. M. (2024). Production of solid hydrochar from waste seaweed by hydrothermal carbonization: effect of process variables. Biomass Conversion and Biorefinery, 14(1), 183-197. https://doi.org/10.1007/s13399-022-02365-9
  • Grande, L., Pedroarena, I., Korili, S. A., & Gil, A. (2021). Hydrothermal liquefaction of biomass as one of the most promising alternatives for the synthesis of advanced liquid biofuels: a review. Materials, 14(18), 5286. https://doi.org/10.3390/ma14185286
  • Liu, T., Li, Z., Kudo, S., Gao, X., & Hayashi, J.-i. (2024). Leaching char with acidic aqueous phase from biomass pyrolysis: Valorization of the leachate via catalytic hydrothermal gasification. Fuel, 373, 132264. https://doi.org/10.1016/j.fuel.2024.132264
  • Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Srivastava, S., Sharma, N. R., & Kumar, A. (2020). A comprehensive review on hydrothermal carbonization of biomass and its applications. Chemistry Africa, 3, 1-19. https://doi.org/10.1007/s42250-019-00098-
  • Masoumi, S., Borugadda, V. B., Nanda, S., & Dalai, A. K. (2021). Hydrochar: a review on its production technologies and applications. Catalysts, 11(8), 939. https://doi.org/10.3390/catal11080939
  • Bao, R., Wang, S., Feng, J., Duan, Y., Liu, K., Zhao, J., . . . Yang, J. (2024). A Review of Hydrothermal Biomass Liquefaction: Operating Parameters, Reaction Mechanism, and Bio-Oil Yields and Compositions. Energy & Fuels, 38(10), 8437-8459. https://doi.org/10.1021/acs.energyfuels.4c00240
  • El Bast, M., Allam, N., Abou Msallem, Y., Awad, S., & Loubar, K. (2023). A review on continuous biomass hydrothermal liquefaction systems: Process design and operating parameters effects on biocrude. Journal of the Energy Institute, 108, 101260. https://doi.org/10.1016/j.joei.2023.101260
  • Elhassan, M., Abdullah, R., Kooh, M. R. R., & Chou Chau, Y.-F. (2023). Hydrothermal liquefaction: A technological review on reactor design and operating parameters. Bioresource Technology Reports, 21, 101314. https://doi.org/10.1016/j.biteb.2022.101314
  • Shah, A. A., Toor, S. S., Seehar, T. H., Nielsen, R. S., H. Nielsen, A., Pedersen, T. H., & Rosendahl, L. A. (2020). Bio-crude production through aqueous phase recycling of hydrothermal liquefaction of sewage sludge. Energies, 13(2), 493. https://doi.org/10.3390/en13020493
  • Mathanker, A., Das, S., Pudasainee, D., Khan, M., Kumar, A., & Gupta, R. (2021). A review of hydrothermal liquefaction of biomass for biofuels production with a special focus on the effect of process parameters, Co-solvents, and extraction solvents. Energies, 14(16), 4916. https://doi.org/10.3390/en14164916
  • Roy, S., Sinha, P., & Roy, S. (2024). Catalytic Hydrothermal Liquefaction of Algal Biomass for Diesel Like Bio-Crude Oil. In Bharadvaja, N., Kumar, L., Pandit, S., Banerjee, S., & Anand, R. (Eds.), Recent Trends and Developments in Algal Biofuels and Biorefinery, pp. 401-439. Cham: Springer.
  • Jensen, M. S., Madsen, R. B., Salionov, D., & Glasius, M. (2024). Predicting the chemical composition of biocrude from hydrothermal liquefaction of biomasses using a multivariate statistical approach. Sustainable Energy & Fuels, 1-12. https://doi.org/10.1039/D4SE00860J
  • Awogbemi, O., & Kallon, D. V. V. (2023). Towards the development of underutilized renewable energy resources in achieving carbon neutrality. Fuel Communications, 17, 100099. https://doi.org/10.1016/j.jfueco.2023.100099
  • Escobar, E. L. N., Da Silva, T. A., Pirich, C. L., Corazza, M. L., & Pereira Ramos, L. (2020). Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Frontiers in Bioengineering and Biotechnology, 8, 252. https://doi.org/10.3389/fbioe.2020.00252
  • Versteeg, F. A., Picchioni, F., & Versteeg, G. F. (2024). On the mass transfer of supercritical fluids, specifically super critical CO2: An overview. Chemical Engineering Journal, 493, 152521. https://doi.org/10.1016/j.cej.2024.152521
  • Chen, Z., Chen, H., Xu, Y., Hu, M., Hu, Z., Wang, J., & Pan, Z. (2023). Reactor for biomass conversion and waste treatment in supercritical water: A review. Renewable and Sustainable Energy Reviews, 171, 113031. https://doi.org/10.1016/j.rser.2022.113031
  • Ngamkhae, N., Monthakantirat, O., Chulikhit, Y., Maneenet, J., Khamphukdee, C., Chotritthirong, Y., . . . Kwankhao, P. (2023). Approach of Supercritical Carbon Dioxide for the Extraction of Kleeb Bua Daeng Formula. Molecules, 28(19), 6873. https://doi.org/10.3390/molecules28196873
  • Ahangari, H., King, J. W., Ehsani, A., & Yousefi, M. (2021). Supercritical fluid extraction of seed oils – A short review of current trends. Trends in Food Science & Technology, 111, 249-260. https://doi.org/10.1016/j.tifs.2021.02.066
  • Nunes, A. N., Roda, A., Gouveia, L. F., Fernandez, N., Bronze, M. R., & Matias, A. A. (2021). Astaxanthin extraction from marine crustacean waste streams: An integrate approach between microwaves and supercritical fluids. ACS Sustainable Chemistry & Engineering, 9(8), 3050-3059. https://doi.org/10.1021/acssuschemeng.0c06534
  • Vafaei, N., Rempel, C. B., Scanlon, M. G., Jones, P. J., & Eskin, M. N. (2022). Application of supercritical fluid extraction (SFE) of tocopherols and carotenoids (hydrophobic antioxidants) compared to non-SFE methods. AppliedChem, 2(2), 68-92. https://doi.org/10.3390/appliedchem2020005
  • Sodeifian, G., & Usefi, M. M. B. (2023). Solubility, Extraction, and nanoparticles production in supercritical carbon dioxide: A mini‐review. ChemBioEng Reviews, 10(2), 133-166. https://doi.org/10.1002/cben.202200020
  • Scopel, E., Santos, L. C. d., Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274, 122769. https://doi.org/10.1016/j.jclepro.2020.122769
  • Ismail, K. S. K., Matano, Y., Sakihama, Y., Inokuma, K., Nambu, Y., Hasunuma, T., & Kondo, A. (2022). Pretreatment of extruded Napier grass byhydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production. Bioresource Technology, 343, 126071. https://doi.org/10.1016/j.biortech.2021.126071
  • Attard, T. M., Bukhanko, N., Eriksson, D., Arshadi, M., Geladi, P., Bergsten, U., . . . Hunt, A. J. (2018). Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. Journal of Cleaner Production, 177, 684-698. https://doi.org/10.1016/j.jclepro.2017.12.155
  • Akalın, M. K., Tekin, K., & Karagöz, S. (2017). Supercritical fluid extraction of biofuels from biomass. Environmental Chemistry Letters, 15, 29-41. https://doi.org/10.1007/s10311-016-0593-z
  • Scaglia, B., D’Incecco, P., Squillace, P., Dell’Orto, M., De Nisi, P., Pellegrino, L., & Adani, F. (2020). Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. Journal of Cleaner Production, 243, 118650. https://doi.org/10.1016/j.jclepro.2019.118650
  • Li, J., Lin, L., Ju, T., Meng, F., Han, S., Chen, K., & Jiang, J. (2024). Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review. Renewable and Sustainable Energy Reviews, 189, 113979. https://doi.org/10.1016/j.rser.2023.113979
  • Taqi, A., Farcot, E., Robinson, J. P., & Binner, E. R. (2020). Understanding microwave heating in biomass-solvent systems. Chemical Engineering Journal, 393, 124741. https://doi.org/10.1016/j.cej.2020.124741
  • Qin, M., Zhang, L., & Wu, H. (2022). Dielectric loss mechanism in electromagnetic wave absorbing materials. Advanced Science, 9(10), 2105553. https://doi.org/10.1002/advs.202105553
  • Chia, S. R., Nomanbhay, S., Milano, J., Chew, K. W., Tan, C.-H., & Khoo, K. S. (2022). Microwave-absorbing catalysts in catalytic reactions of biofuel production. Energies, 15(21), 7984. https://doi.org/10.3390/en15217984
  • Hargreaves, G., Buttress, A., Dimitrakis, G., Dodds, C., Martin-Tanchereau, P., Unthank, M. G., & Irvine, D. J. (2020). The importance of ionic conduction in microwave heated polyesterifications. Reaction Chemistry & Engineering, 5(3), 495-505. https://doi.org/10.1039/C9RE00313D
  • Zhang, S., Qiu, Q., Zeng, C., Paik, K.-W., He, P., & Zhang, S. (2024). A review on heating mechanism, materials and heating parameters of microwave hybrid heated joining technique. Journal of Manufacturing Processes, 116, 176-191. https://doi.org/10.1016/j.jmapro.2024.02.055
  • Tian, G., Deng, W., Yang, T., Xiong, D., Zhang, H., Lan, B., & Huang, H. (2023). Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small, 19(16), 2207947. https://doi.org/10.1002/smll.202207947
  • Ren, X., Shanb Ghazani, M., Zhu, H., Ao, W., Zhang, H., Moreside, E., & Bi, X. (2022). Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy, 315, 118970. https://doi.org/10.1016/j.apenergy.2022.118970
  • Yue, W., Hu, Y., Yu, Z., Zhan, J., & Ma, X. (2024). Microwave-assisted catalytic rapid pyrolysis of soybean straw for the preparation of high-value indole-rich bio-oils. Journal of Analytical and Applied Pyrolysis, 181, 106634. https://doi.org/10.1016/j.jaap.2024.106634
  • Mohabeer, C., Guilhaume, N., Laurenti, D., & Schuurman, Y. (2022). Microwave-assisted pyrolysis of biomass with and without use of catalyst in a fluidised bed reactor: a review. Energies, 15(9), 3258. https://doi.org/10.3390/en15093258
  • Ray, R. C., Behera, S. S., Awogbemi, O., Sooch, B. S., Thatoi, H., Rath, S., & Aguilar-Rivera, N. (2025). Beyond enzymes and organic acids, solid-state fermentation as an alternative for valorizing fruits and vegetable wastes into novel bio-products in a circular economy: A critical review. AIMS Microbiology, 11(2), 462. https://doi.org/10.3934/microbiol.2025021
  • Ma, Y., Wang, W., Miao, H., Han, S., Fu, Y., Chen, Y., & Hao, J. (2024). Physicochemical synergistic effect of microwave-assisted Co-pyrolysis of biomass and waste plastics by thermal degradation, thermodynamics, numerical simulation, kinetics, and products analysis. Renewable Energy, 223, 120026. https://doi.org/10.1016/j.renene.2024.120026
  • Torrado, I., Neves, B. G., da Conceição Fernandes, M., Carvalheiro, F., Pereira, H., & Duarte, L. C. (2024). Microwave-assisted hydrothermal processing of pine nut shells for oligosaccharide production. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-023-05244-z
  • Li, C., Xia, L., Yuan, Q., Ai, P., Niu, W., & Zhong, F. (2024). Microwave–assisted hydrothermal conversion of crop straw into value–added products via magnesium acetate. Journal of Cleaner Production, 437, 140634. https://doi.org/10.1016/j.jclepro.2024.140634
  • Elkasabi, Y., & Mullen, C. A. (2024). Solvent Liquefaction of Fast Pyrolysis Bio-Oil Distillate Residues for Solids Valorization. Industrial & Engineering Chemistry Research, 63(26), 11701-11709. https://doi.org/10.1021/acs.iecr.4c01364
  • Öcal, B., & Yüksel, A. (2023). Liquefaction of Oak Wood Using Various Solvents for Bio-oil Production. ACS omega, 8(43), 40944-40959. https://doi.org/10.1021/acsomega.3c06419
  • Yan, M., Liu, Y., Wen, X., Yang, Y., Cui, J., Chen, F., & Hantoko, D. (2023). Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production. Renewable Energy, 215, 118949. https://doi.org/10.1016/j.renene.2023.118949
  • Ghosh, A., Haverly, M. R., Lindstrom, J. K., Johnston, P. A., & Brown, R. C. (2020). Tetrahydrofuran-based two-step solvent liquefaction process for production of lignocellulosic sugars. Reaction Chemistry & Engineering, 5(9), 1694-1707. https://doi.org/10.1039/D0RE00192A
  • Haverly, M. R., Schulz, T. C., Whitmer, L. E., Friend, A. J., Funkhouser, J. M., Smith, R. G., & Brown, R. C. (2018). Continuous solvent liquefaction of biomass in a hydrocarbon solvent. Fuel, 211, 291-300. https://doi.org/10.1016/j.fuel.2017.09.072
  • Djandja, O. S., Salami, A. A., Yuan, H., Lin, H., Huang, Z., & Kang, S. (2023). Machine learning prediction of bio-oil yield during solvothermal liquefaction of lignocellulosic biowaste. Journal of Analytical and Applied Pyrolysis, 175, 106209. https://doi.org/10.1016/j.jaap.2023.106209
  • Yerrayya, A., Nikunj, A., Prashanth, P. F., Chakravarthy, S. R., Natarajan, U., & Vinu, R. (2022). Optimization of bio-crude yield and its calorific value from hydrothermal liquefaction of bagasse using methanol as co-solvent. Energy, 244, 123192. https://doi.org/10.1016/j.energy.2022.123192
  • Snigur, D., Azooz, E. A., Zhukovetska, O., Guzenko, O., & Mortada, W. (2023). Low-density solvent-based liquid-liquid microextraction for separation of trace concentrations of different analytes. TrAC Trends in Analytical Chemistry, 167, 117260. https://doi.org/10.1016/j.trac.2023.117260
  • Torrado, I., Neves, B. G., da Conceição Fernandes, M., Carvalheiro, F., Pereira, H., & Duarte, L. C. (2024). Microwave-assisted hydrothermal processing of pine nut shells for oligosaccharide production. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-023-05244-z
  • Di Lauro, F., Balsamo, M., Solimene, R., Alfieri, M. L., Manini, P., Migliaccio, R., Salatino, P., & Montagnaro, F. (2024). Characterization of biocrude produced by hydrothermal liquefaction of municipal sewage sludge in a 500 mL batch reactor. Industrial & Engineering Chemistry Research, 63(2), 955-967. https://doi.org/10.1021/acs.iecr.3c03058
  • Awogbemi, Adeyeye, E. I., & Lawal, A. S. (2025). Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. Turkish Journal of Engineering, 9(2), 334-341. https://doi.org/10.31127/tuje.1526120
  • Yang, X., Shao, S., Li, X., & Tang, D. (2023). Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor. Renewable Energy, 211, 21-30. https://doi.org/10.1016/j.renene.2023.04.062
  • Weidong, Z., Zhengxing, J., Xiaolong, Q., Tanongkiat, K., & Junfeng, W. (2023). Hydrogenation of bio-oil in a needle-plate dielectric barrier discharge reactor. Biofuels, 14(8), 775-783. https://doi.org/10.1080/17597269.2023.2173417
  • Wang, J., Wang, S., Lu, J., Yang, M., & Wu, Y. (2021). Improved Bio-Oil Quality from Pyrolysis of Pine Biomass in Pressurized Hydrogen. Applied Sciences, 12(1), 46. https://doi.org/10.3390/app12010046
  • Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017. https://doi.org/10.1016/j.jece.2021.107017
  • Song, E., Kim, H., Kim, K. W., & Yoon, Y.-M. (2023). Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure. Energies, 16(7), 3265. https://doi.org/10.3390/en16073265
  • Awogbemi, O., & Desai, D. A. (2025). Progress in the conversion of biodiesel-derived crude glycerol into biofuels and other bioproducts. Bioresource Technology Reports, 30, 102106. https://doi.org/10.1016/j.biteb.2025.102106
  • Zhang, A., Qiu, Y., Chen, D., Feng, Y., & Zhang, B. (2024). Valorization of fruit waste by biochar production via thermochemical conversion: A mini-review. Journal of Analytical and Applied Pyrolysis, 182, 106688. https://doi.org/10.1016/j.jaap.2024.106688
  • Awogbemi, O., Ojo, A. A., & Adeleye, S. A. (2024). Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues. Journal of Renewable Materials, 12(1), 1-28. https://doi.org/10.32604/jrm.2023.045822
  • Sunil Kumar, K. (2025). Investigation of moringa oleforia biodiesel doped with 1-Hexanol+ Al2O3 catalyst in single cylinder compression ignition engine. International Journal of Ambient Energy, 46(1), 2462593. https://doi.org/10.1080/01430750.2025.2462593
  • Aswathanrayan, M. S., Santhosh, N., Venkataramana, S. H., Kumar, K. S., Kamangar, S., Arabi, A. I .A., Algburi, S., Al-Sareji, O. J. & Bhowmik, A. (2025). Prediction of performance and emission features of diesel engine using alumina nanoparticles with neem oil biodiesel based on advanced ML algorithms. Scientific Reports, 15(1), 12683. https://doi.org/10.1038/s41598-025-97092-2
  • Soydan, Z., Şahin, F. İ., & Acaralı, N. (2024). Advancements in polymeric matrix composite production: A review on methods and approaches. Turkish Journal of Engineering, 8(4), 677-686. https://doi.org/10.31127/tuje.1468998
  • Yiğit, G. (2025). A Comparative Study of Deep Learning Approaches for Human Action Recognition. Turkish Journal of Engineering, vol. 9(2), 281-289. https://doi.org/10.31127/tuje.1579795
  • Menachery, N., Deepanraj, B., & Thomas, S. (2025). Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. Turkish Journal of Engineering, 9(2), 378-384. https://doi.org/10.31127/tuje.1532430
  • Ethiraj, N., Sivabalan, T., Sofia, J., Harika, D., & Nikolova, M. (2025). A comprehensive review on application of machine intelligence in additive manufacturing. Turkish Journal of Engineering, 9(1), 37-46. https://doi.org/10.31127/tuje.1502587
  • Pachaiyappan, K., Sengodan, N., Sekar, P., Ramalingam, V., & Periyasamy, S. (2024). Enhancing combustion efficiency: utilizing graphene oxide nanofluids as fuel additives with tomato oil methyl ester in CI engines. Turkish Journal of Engineering, 8(4), 720-728. https://doi.org/10.31127/tuje.1480190
There are 81 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Materials Science and Technologies
Journal Section Articles
Authors

Omojola Awogbemi 0000-0001-6830-6434

Dawood A Desai 0000-0002-5608-4528

Daramy Vandi Von Kallon 0000-0002-2579-5626

Ayodeji Usman Akerele 0009-0002-6397-3881

Publication Date October 8, 2025
Submission Date May 1, 2025
Acceptance Date August 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Awogbemi, O., Desai, D. A., Kallon, D. V. V., Akerele, A. U. (2025). Physicochemical Conversion Technologies of Biomass for Bioenergy Production. Turkish Journal of Engineering, 9(4), 643-660. https://doi.org/10.31127/tuje.1688455
AMA Awogbemi O, Desai DA, Kallon DVV, Akerele AU. Physicochemical Conversion Technologies of Biomass for Bioenergy Production. TUJE. October 2025;9(4):643-660. doi:10.31127/tuje.1688455
Chicago Awogbemi, Omojola, Dawood A Desai, Daramy Vandi Von Kallon, and Ayodeji Usman Akerele. “Physicochemical Conversion Technologies of Biomass for Bioenergy Production”. Turkish Journal of Engineering 9, no. 4 (October 2025): 643-60. https://doi.org/10.31127/tuje.1688455.
EndNote Awogbemi O, Desai DA, Kallon DVV, Akerele AU (October 1, 2025) Physicochemical Conversion Technologies of Biomass for Bioenergy Production. Turkish Journal of Engineering 9 4 643–660.
IEEE O. Awogbemi, D. A. Desai, D. V. V. Kallon, and A. U. Akerele, “Physicochemical Conversion Technologies of Biomass for Bioenergy Production”, TUJE, vol. 9, no. 4, pp. 643–660, 2025, doi: 10.31127/tuje.1688455.
ISNAD Awogbemi, Omojola et al. “Physicochemical Conversion Technologies of Biomass for Bioenergy Production”. Turkish Journal of Engineering 9/4 (October2025), 643-660. https://doi.org/10.31127/tuje.1688455.
JAMA Awogbemi O, Desai DA, Kallon DVV, Akerele AU. Physicochemical Conversion Technologies of Biomass for Bioenergy Production. TUJE. 2025;9:643–660.
MLA Awogbemi, Omojola et al. “Physicochemical Conversion Technologies of Biomass for Bioenergy Production”. Turkish Journal of Engineering, vol. 9, no. 4, 2025, pp. 643-60, doi:10.31127/tuje.1688455.
Vancouver Awogbemi O, Desai DA, Kallon DVV, Akerele AU. Physicochemical Conversion Technologies of Biomass for Bioenergy Production. TUJE. 2025;9(4):643-60.
Flag Counter