Structural analysis of traditional Antakya houses after the Kahramanmaraş earthquake
Year 2025,
Volume: 9 Issue: 4, 686 - 701, 08.10.2025
Filiz Karakuş
,
Ekrem Bahadır Çalışkan
,
Salah Hajısmaıl
Abstract
This study investigates the seismic vulnerability of two traditional masonry houses in Antakya, Türkiye, following the devastating Kahramanmaraş earthquakes on February 6, 2023. Recognizing the significant risk posed to historical structures in seismically active regions, the research employs the 3Muri software to conduct an analysis of the structural behavior of such architectural heritage against ground shaking taking into account the damage evaluation in the context of the 2023 Kahramanmaraş earthquake. The method of the study is especially favorable to the use of a macromodel approach, Equivalent Frame Method, under which the seismic response of the structural system is modelled. The analysis highlights the critical importance of accurately modeling the material properties and structural characteristics of these buildings, which feature complex geometries and historical construction techniques. According to the obtained results, it appears that both houses may fail under lateral decay forces and the wall accounts for a relevant portion of wall settlement beyond the limit of acceptability. It reveals that despite prior retrofitting efforts, both houses demonstrated insufficient seismic safety, underscoring the need for enhanced understanding and intervention strategies in the preservation of cultural heritage. The findings suggest that future assessments should prioritize comprehensive data collection on soil properties and previous retrofitting practices to improve the accuracy of numerical modeling. This research contributes to the discourse on the preservation of historic masonry buildings, advocating for proactive measures to safeguard architectural heritage against seismic threats.
Supporting Institution
Ankara Yıldırım Beyazıt University
References
-
ICOMOS. (2004). ICOMOS World Report 2004-2005 on monuments and sites in danger. Retrieved from https://www.icomos.org/public/risk/2004/foreword2004.pdf
-
Lourenço, P. B., Krakowiak, K. J., Fernandes, F. M., & Ramos, L. F. (2007). Failure analysis of Monastery of Jerónimos, Lisbon: How to learn from sophisticated numerical models. Engineering Failure Analysis, 14(2), 280–300. https://doi.org/10.1016/j.engfailanal.2006.02.002
-
Boccardi, G. (2006). A Strategy for Reducing Risks from Disasters at World Heritage Properties. Integrating traditional knowledge systems and concern for cultural and natural heritage into risk management strategies. In Proceedings from the special session organized by ICCROM and the World Heritage Centre for the International Disaster Reduction Conference (IDRC) (pp. 20–27). Davos, Switzerland.
-
Khurshid, F., & Gunal, A. Y. (2024, April 30). Harnessing earthquake generated glass and plastic waste for sustainable construction. Turkish Journal of Engineering.. https://doi.org/10.31127/tuje.1405272
-
Paçacı, B., Ataseven, H., Çubuk, K., & Erol, S. (2025). Evaluation of Emergency Preparedness of Airports Located in Türkiye. Turkish Journal of Engineering, 9(3), 560–570. https://doi.org/10.31127/tuje.1588670
-
Bayraktar, A., Coşkun, N., & Yalçin, A. (2007). Damages of masonry buildings during the July 2, 2004 Doǧubayazıt (Ağrı) earthquake in Turkey. Engineering Failure Analysis, 14(1), 147–157. https://doi.org/10.1016/j.engfailanal.2005.11.011
-
Kocaman, İ. (2023). The effect of the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6) on historical masonry mosques and minarets. Engineering Failure Analysis, 149. https://doi.org/10.1016/j.engfailanal.2023.107225
-
Şenol, C. (2020). Türkiye’de Meydana Gelen Büyük Depremlerin Yerleşme ve Demografik Yapı Üzerindeki Etkileri (1927-2020). Uluslararası Sosyal Bilimler Akademi Dergisi, (4), 620–644. https://doi.org/10.47994/usbad.808881
-
Mustafa Eser, M., & Can, H. (2022). Investigation of the effects of using steel cross and reinforced concrete shears earthquake performance in building. Engineering Applications, 1(2), 157–162. Retrieved from https://publish.mersin.edu.tr/index.php/enap
-
Yılmaz, M., Can, H., & Köktaş, F. (2024). Examination of buildings with different number of floors using non-linear time history analysis according to TBEC-2018 and EC 8 seismic codes. Advanced Engineering Science, 4, 76–92. Retrieved from http://publish.mersin.edu.tr/index.php/ades
-
Deringöl, A. H., & Güneyisi, E. M. (2023). Enhancing the seismic performance of high-rise buildings with lead rubber bearing isolators. Turkish Journal of Engineering, 7(2), 99–107. https://doi.org/10.31127/tuje.1026994
-
Strategy and Budget Directorate of the Presidency of the Republic of Türkiye. (2023). 2023 Kahramanmaraş and Hatay Earthquakes Report. Retrieved from https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-and-Hatay-Earthquakes-Report.pdf
-
Artioli, E., Battaglia, R., & Tralli, A. (2013). Effects of May 2012 Emilia earthquake on industrial buildings of early ’900 on the Po river line. Engineering Structures, 56, 1220–1233. https://doi.org/10.1016/j.engstruct.2013.06.026
-
Formisano, A., Florio, G., Landolfo, R., & Mazzolani, F. M. (2015). Numerical calibration of an easy method for seismic behaviour assessment on large scale of masonry building aggregates. Advances in Engineering Software, 80(C), 116–138. https://doi.org/10.1016/j.advengsoft.2014.09.013
-
Croci, G. (1995). The Colosseum: safety evaluation and preliminary criteria of intervention. In Proceeding of structural analysis of historical constructions. Barcelona.
-
Macchi, G. /, Ruggeri, G. /, & Eusebio, M. (1993). Structural assessment of Leaning Tower of Pisa. IABSE reports, 400–408. https://doi.org/10.5169/seals-53323
-
Lourenço, P. B. (1998). Structural Analysis of Historical Constructions Il. In P. Roca, J. L. Gonzalez, & E. Onate (Eds.), (pp. 57–91). Barcelona. Retrieved from https://repositorium.sdum.uminho.pt/bitstream/1822/66261/1/57.pdf
-
ICOMOS. (2003). ICOMOS Charter- Principles fort he Analysis, Conservation and Structural Restoration of Architectural Heritage. Retrieved August 12, 2024, from https://www.icomos.org/en.
-
3Muri Software. (n.d.). Retrieved August 4, 2024, from https://www.3muri.com
-
Fiorentino, G., Quaranta, G., Mylonakis, G., Lavorato, D., Pagliaroli, A., Carlucci, G., … Nuti, C. (2019). Seismic reassessment of the leaning tower of Pisa: Dynamic monitoring, site response, and SSI. Earthquake Spectra, 35(2), 703–736. https://doi.org/10.1193/021518EQS037M
-
Betti, M., Orlando, M., & Vignoli, A. (2011). Static behaviour of an Italian Medieval Castle: Damage assessment by numerical modelling. Computers and Structures, 89(21–22), 1956–1970. https://doi.org/10.1016/j.compstruc.2011.05.022
-
Salvatore, W., Bennati, S., & Maggiora, M. Della. (2003). the church of Santa Maria della Rocca in. Casalnuovo Transactions on the Built Environment (Vol. 72). Retrieved from www.witpress.com,
-
Croci, G. (1998). The conservation and structural restoration of architectural heritage. Southampton: Computational Mechanics Publications.
-
Leftheris, B., Stavroulaki, M., Sapounaki, A., & Stavroulakis, G. (2006). Computational mechanics for heritage structures.
-
Grimaldi, A., Luciano, R., & Sacco, E. (1991). Nonlinear dynamic analysis of masonry structures:via FEM. In R. Glowinski (Ed.), Proceedings of the 10th international conference on computing methods in applied sciences and engineering on computing methods in applied sciences and engineering. NW: Nova Science Publishers.
-
Mele, E., & De Luca, A. (1999). Behaviour and modelling of masonry church buildings in seismic regions. Retrieved from www.witpress.com,
-
Betti, M., Galano, L., & Vignoli, A. (2014). Comparative analysis on the seismic behaviour of unreinforced masonry buildings with flexible diaphragms. Engineering Structures, 61, 195–208. https://doi.org/10.1016/j.engstruct.2013.12.038
-
Casolo, S. (1998). A Three-Dimensional Model for Vulnerability Analysis of Slender Medieval Masonry Towers. Journal of Earthquake Engineering, 2(4), 487–512. https://doi.org/10.1080/13632469809350332
-
Lourenço, P. B. (2005). Assessment, diagnosis and strengthening of Outeiro Church, Portugal. Construction and Building Materials, 19(8), 634–645. https://doi.org/10.1016/j.conbuildmat.2005.01.010
-
Casolo, S., & Sanjust, C. A. (2009). Seismic analysis and strengthening design of a masonry monument by a rigid body spring model: The “Maniace Castle” of Syracuse. Engineering Structures, 31(7), 1447–1459. https://doi.org/10.1016/j.engstruct.2009.02.030
-
Casolo, S. (2009). Macroscale modelling of microstructure damage evolution by a rigid body and spring model. Journal of Mechanics of Materials and Structures, 4(3), 551–570. https://doi.org/10.2140/jomms.2009.4.551
-
Žarnić, R., & Rajčić, V. (2023). Post-earthquake assessment of monumental building in Croatia by 3Muri software. Technical Annals, 1(3), 1–13.
-
Penna, A., Lagomarsino, S., & Galasco, A. (2013). A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthquake Engineerıng & Structural Dynamics, 43, 159–179. https://doi.org/10.1002/eqe.2335
-
Maio, R., Vicente, R., Formisano, A., & Varum, H. (2015). Seismic vulnerability of building aggregates through hybrid and indirect assessment techniques. Bulletin of Earthquake Engineering, 13(10), 2995–3014. https://doi.org/10.1007/s10518-015-9747-9
-
Oliveira, D. V, & Ademović, N. (2012). Seismic Assessment of a Typical Masonry Residential Building in Bosnia and Herzegovina. In Proceeding of the 15th world conference of earthquake engineering—WCEE. Lisbon, Portugal. Retrieved from https://www.researchgate.net/publication/262260904
-
Ferraioli, M., & Abruzzese, D. (2021). Seismic Assessment of Four Historical Masonry Towers in Southern Italy. Cultural Heritage and Science, 2(2), 50–60. Retrieved from https://dergipark.org.tr/en/pub/cuhes
-
Karataş, L., Ateş, T., Alptekin, A., Dal, M., & Yakar, M. (2023). A systematic method for post-earthquake damage assessment: Case study of the Antep Castle, Türkiye. Advanced Engineering Science, 3, 62–71. Retrieved from http://publish.mersin.edu.tr/index.php/ades
-
Saraçoğlu, M. H., & Özkaya, A. (2023). Investigation of acceleration on non-structural building elements under earthquake effect. Turkish Journal of Engineering, 7(1), 56–63. https://doi.org/10.31127/tuje.1021866
-
Ertuğrul, Ö. L., & Zahin, B. B. (2023). A parametric study on the dynamic lateral earth forces on retaining walls according to European and Turkish Building Earthquake Codes. Turkish Journal of Engineering, 7(3), 196–207. https://doi.org/10.31127/tuje.1100015
-
Lourenço, P. B. (2002). Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), 301–319. https://doi.org/10.1002/pse.120
-
Binda, L., Saisi, A., & Tiraboschi, C. (2000). Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials (Vol. 14).
-
Corradi, M., Borri, A., & Vignoli, A. (2003). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337. https://doi.org/10.1016/S0950-0618(03)00007-2
-
Betti, M., & Vignoli, A. (2008). Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance. Engineering Structures, 30(2), 352–367. https://doi.org/10.1016/j.engstruct.2007.03.027
-
Mom, S., Paterna, P., & Abruzzese, D. (2021). Structural Analysis and Reinforcement of XVI Century Building in the Center of Naples, Italy. Cultural Heritage and Science, 2(2), 31–42. Retrieved from https://dergipark.org.tr/en/pub/cuhes
-
Barbieri, G., Biolzi, L., Bocciarelli, M., Fregonese, L., & Frigeri, A. (2013). Assessing the seismic vulnerability of a historical building. Engineering Structures, 57, 523–535. https://doi.org/10.1016/j.engstruct.2013.09.045
-
Lourenço, P. B. (2006). Structural Behavior of Civil Engineering Structures: Highlight in Historical and Masonry Structures. Portugal. Retrieved from https://repositorium.sdum.uminho.pt/handle/1822/6436
-
Saraç, M. F. (2003). Tarihi Yığma Kargir Yapıların Güçlendirilmesi. İstanbul.
-
Milani, G., Lourenço, P. B., & Tralli, A. (2006). Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Computers and Structures, 84(3–4), 166–180. https://doi.org/10.1016/j.compstruc.2005.09.005
-
Zucchini, A., & Lourenço, P. B. (2002). A micro-mechanical model for the homogenisation of masonry. International Journal of Solids and Structures, 39(12), 3233–3255. https://doi.org/10.1016/S0020-7683(02)00230-5
-
Ponte, M., Bento, R., & Vaz, S. D. (2021). A Multi-Disciplinary Approach to the Seismic Assessment of the National Palace of Sintra. International Journal of Architectural Heritage, 15(5), 757–778. https://doi.org/10.1080/15583058.2019.1648587
-
Bozkurt, S. G. (2018). Antakya’nın Geleneksel Evlerinin Avlu Özellikleri Üzerine Bir İnceleme. Turkish Journal of Forest Science, 3(1), 1–12. Retrieved from https://orcid.org/0000-0003-0775-2005
-
Arıman, B. (2002). Antakya Kent Tarihi Doku İçinde Tipolojik Analiz Çalışmaları (Yüksek Lisans Tezi). Fen Bilimleri, İstanbul.
-
Kara, A. (2005). XIX. Yüzyılın İlk Yarısında Antakya’da Yerleşme ve Nüfus. OTAM Ankara Üniversitesi Osmanlı Tarihi Araştırma ve Uygulama Merkezi Dergisi, 17, 1–14.
-
Kocaoğlu, S. E. (2016). Antakya Tarihi Kent Dokusunun Kentsel Tasarım Açısından İrdelenmesi ve Örnek Bir Çalışma (Yüksek Lisans Tezi). Fen Bilimleri Enstitüsü, Bartın.
-
Erdoğan, E. (1996). Anadolu Avlularının Özellik ve Düzenleme İlkeleri Üzerinde Karşılaştırmalı Bir Araştırma (Doktora Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
-
Nurlu, S. (2020). Koruma Yöntemlerinden Biri Olan Yeniden İşlevlendirme Kavramının Çevresel Etkileri- Antakya Konak Restoran Örneği, Master Thesis. İstanbul.