Research Article
BibTex RIS Cite

A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content

Year 2025, Volume: 9 Issue: 4, 754 - 767, 08.10.2025
https://doi.org/10.31127/tuje.1698748

Abstract

Sentiment analysis (SA) is an influential task in natural language processing that aims to understand and categorize the underlying sentiment expressed in text. Due to the fast growth of technology, social media is becoming more familiar in human daily life. Social media is a platform for people to share and express their opinions, experiences, attitudes, reactions, etc. The purpose of sentiment analysis is to identify whether the emotion conveyed in a classified text is positive, negative, neutral, or any other individual sentiment to understand the emotional context of the text. Deep learning techniques have shown remarkable performance in sentiment analysis tasks, outperforming traditional machine learning algorithms. This article presents a comparative analysis of three deep learning models, including multilayer perceptron (MLP), 1-dimensional convolutional neural networks (1D-CNN), and long short-term memory (LSTM) networks, for sentiment analysis of social media contents (SMC). The experiments are conducted on publicly available benchmark datasets of US airlines (sentiment tweets) for binary and ternary classes. Likewise, we explore the impact of various pre-processing techniques, such as punctuation elimination, erasing special symbols, stop word removal, strange word removal, converting a lowercase, stemming, lemmatization, and tokenization in improving the performance of deep learning models for sentiment analysis. The results demonstrate that the LSTM network for binary class dataset achieves a high accuracy rate of 94.67%, F1-S value of 95.26% and a low error rate of 5.33% in sentiment analysis tasks, followed by 1D-CNN and MLP. Besides, the MLP technique gains better results in comparison to other methods for the ternary class datasets. The findings of this study contribute to the existing literature by providing insights into the comparative performance of different deep-learning architectures for sentiment analysis and highlighting the importance of pre-processing techniques in achieving accurate sentiment classification.

Ethical Statement

The authors declare no conflicts of interest.

Supporting Institution

NO

Project Number

NO

Thanks

I am interested in sending a research article to your reputed journal.

References

  • Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., & Cuenca-Jiménez, P.-M. (2023). A Review on Sentiment Analysis from Social Media Platforms. Expert Systems with Applications, 223, 119862. doi:https://doi.org/10.1016/j.eswa.2023.1198 62.
  • Shayaa, S., Jaafar, N. I., Bahri, S., Sulaiman, A., Seuk Wai, P., Wai Chung, Y., Piprani, A. Z., & Al-Garadi, M. A. (2018). Sentiment Analysis of Big Data: Methods, Applications, and Open Challenges. IEEE Access, 6, 37807–37827. https://doi.org/10.1109/access.2018.2851311.
  • Agüero-Torales, M. M., Abreu Salas, J. I., & López-Herrera, A. G. (2021). Deep learning and multilingual sentiment analysis on social media data: An overview. Applied Soft Computing, 107, 107373. https://doi.org/10.1016/j.asoc.2021.107373.
  • Ghazala Nasreen, Muhammad Murad Khan, Younus, M., Zafar, B., & Muhammad Kashif Hanif. (2024). Email spam detection by deep learning models using novel feature selection technique and BERT. Egyptian Informatics Journal/Egyptian Informatics Journal, 26, 100473–100473. https://doi.org/10.1016/j.eij.2024.100473.
  • Hayat, M. K., Daud, A., Alshdadi, A. A., Banjar, A., Abbasi, R. A., Bao, Y., & Dawood, H. (2019). Towards Deep Learning Prospects: Insights for Social Media Analytics. IEEE Access, 7, 36958–36979. https://doi.org/10.1109/ACCESS.2019.2905101.
  • Nwafor, E. O., & Akintayo, F. O. (2024). Predicting Trip Purposes of Households in Makurdi Using Machine Learning: A Comparative Analysis of Decision Tree, CatBoost, and XGBoost Algorithms. Engineering Applications, 3(3), 260-274.
  • Dang, C. N., Moreno-García, M. N., & De la Prieta, F. (2021). Hybrid Deep Learning Models for Sentiment Analysis. Complexity, 2021, 1–16. https://doi.org/10.1155/2021/9986920.
  • Agüero-Torales, M. M., Abreu Salas, J. I., & López-Herrera, A. G. (2021). Deep learning and multilingual sentiment analysis on social media data: An overview. Applied Soft Computing, 107, 107373. https://doi.org/10.1016/j.asoc.2021.107373.
  • Umer, M., Imtiaz, Z., Ahmad, M., Nappi, M., Medaglia, C., Choi, G. S., & Mehmood, A. (2022). Impact of convolutional neural network and FastText embedding on text classification. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-13459-x.
  • Mahadevaswamy, U. B., & Swathi, P. (2023). Sentiment Analysis using Bidirectional LSTM Network. Procedia Computer Science, 218, 45–56. https://doi.org/10.1016/j.procs.2022.12.400
  • Kaur, G., & Sharma, A. (2023). A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-022-00680-6.
  • Xu, Q. A., Chang, V., & Jayne, C. (2022). A Systematic Review of Social media-based Sentiment analysis: Emerging Trends and Challenges. Decision Analytics Journal, 3, 100073. https://doi.org/10.1016/j.dajour.2022.100073.
  • Alshuwaier, F., Areshey, A., & Poon, J. (2022). Applications and Enhancement of Document-Based Sentiment Analysis in Deep learning Methods: Systematic Literature Review. Intelligent Systems with Applications, 200090. https://doi.org/10.1016/j.iswa.2022.200090.
  • Rami Mohawesh, Salameh, H. B., Yaser Jararweh, Mohannad Alkhalaileh, & Maqsood, S. (2024). Fake review detection using transformer-based enhanced LSTM and RoBERTa. International Journal of Cognitive Computing in Engineering, 5, 250–258. https://doi.org/10.1016/j.ijcce.2024.06.001.
  • Mohanty, S., Seth, V. K., Sanjay, H. S., & Prithvi, B. S. (2021). Assessment of Long Short-Term Memory Network for Quora Sentiment Analysis. Journal of the Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-021-00677-4.
  • Singh, S., Kumar, K. and Kumar, B. (2022). Sentiment Analysis of Twitter Data Using TF-IDF and Machine Learning Techniques. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). doi:https://doi.org/10.1109/com-it-con54601.2022.9850477.
  • Satyendra Sıngh. (2024). Analysis of Feature Extraction Techniques for Sentiment Analysis of Tweets. Turkish Journal of Engineering. https://doi.org/10.31127/tuje.1477502.
  • Incekara, C. (2024). Big Data (BD), The Internet of Things (IoT), Artificial Intelligence (AI)-driven Advanced Analytics. Engineering Applications, 3(2), 137-146.
  • Tan, Y. Y., Chow, C.-O., Kanesan, J., Chuah, J. H., & Lim, Y. (2023). Sentiment Analysis and Sarcasm Detection using Deep Multi-Task Learning. Wireless Personal Communications, 129(3), 2213–2237. https://doi.org/10.1007/s11277-023-10235-4.
  • de Oliveira Carosia, A. E., Coelho, G. P., & da Silva, A. E. A. (2021). Investment strategies applied to the Brazilian stock market: A methodology based on Sentiment Analysis with deep learning. Expert Systems with Applications, 184, 115470. https://doi.org/10.1016/j.eswa.2021.115470.
  • Kiranyaz, S. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398.
  • Yuan, X., Tanksley, D., Li, L., Zhang, H., Chen, G., & Wunsch, D. (2021). Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks. Applied Sciences, 11(21), 9844. https://doi.org/10.3390/app11219844.
  • Patra, B., & Dakshina Ranjan Kisku. (2024). Exploring Bengali Image Descriptions through the combination of diverse CNN Architectures and Transformer Decoders. Turkish Journal of Engineering. https://doi.org/10.31127/tuje.1507442.
  • Alorini, G., Rawat, D. B., & Alorini, D. (2021, June 1). LSTM-RNN Based Sentiment Analysis to Monitor COVID-19 Opinions using Social Media Data. IEEE Xplore. https://doi.org/10.1109/ICC42927.2021.9500897.
  • Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á., Aveleira-Mata, J., Alija-Pérez, J.-M., & García-Ordás, M. T. (2022). Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT. PeerJ Computer Science, 8, e906. https://doi.org/10.7717/peerj-cs.906.
  • Edara, D. C., Vanukuri, L. P., Sistla, V., & Kolli, V. K. K. (2019). Sentiment analysis and text categorization of cancer medical records with LSTM. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01399-8.
  • Elfaık, H., & Nfaouı, E. H. (2022). Deep Contextualized Embeddings for Sentiment Analysis of Arabic Book’s Reviews. Procedia Computer Science, 215, 973–982. https://doi.org/10.1016/j.procs.2022.12.100.
  • Adem Demirtop, & Onur Sevli. (2024). Wind speed prediction using LSTM and ARIMA time series analysis models: A case study of Gelibolu. Turkish Journal of Engineering. https://doi.org/10.31127/tuje.1431629.
  • Mema, B., Basholli, F., & Hyka, D. (2024). Learning transformation and virtual interaction through ChatGPT in Albanian higher education. Advanced Engineering Science, 4, 130-140.
  • Malhotra, S., Kumar, V., & Agarwal, A. (2021). Bidirectional transfer learning model for sentiment analysis of natural language. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02800-7.
  • Rustam, F., Ashraf, I., Mehmood, A., Ullah, S., & Choi, G. (2019). Tweets Classification on the Base of Sentiments for US Airline Companies. Entropy, 21(11), 1078. https://doi.org/10.3390/e21111078.
  • Umer, M., Ashraf, I., Mehmood, A., Kumari, S., Ullah, S., & Sang Choi, G. (2020). Sentiment analysis of tweets using a unified convolutional neural network‐long short‐term memory network model. Computational Intelligence. https://doi.org/10.1111/coin.12415.
  • Saad, A. I. (2020). Opinion Mining on US Airline Twitter Data Using Machine Learning Techniques. 2020 16th International Computer Engineering Conference (ICENCO). https://doi.org/10.1109/icenco49778.2020.9357390.
  • Tabinda Kokab, S., Asghar, S., & Naz, S. (2022). Transformer-based deep learning models for the sentiment analysis of social media data. Array, 14, 100157. https://doi.org/10.1016/j.array.2022.100157.
  • Kamyab, M., Liu, G., & Adjeisah, M. (2021). Attention-Based CNN and Bi-LSTM Model Based on TF-IDF and GloVe Word Embedding for Sentiment Analysis. Applied Sciences, 11(23), 11255. https://doi.org/10.3390/app112311255.
  • Naseem, U., Razzak, I., Musial, K., & Imran, M. (2020). Transformer based Deep Intelligent Contextual Embedding for Twitter sentiment analysis. Future Generation Computer Systems, 113, 58–69. https://doi.org/10.1016/j.future.2020.06.050.
  • Kayıran, H. F. (2022). The function of artificial intelligence and its sub-branches in the field of health. Engineering Applications, 1(2), 99-107.
There are 37 citations in total.

Details

Primary Language English
Subjects Automated Software Engineering, Reinforcement Learning
Journal Section Articles
Authors

Satyendra Sıngh 0009-0009-7907-0063

Krishan Kumar 0000-0002-9296-1655

Brajesh Kumar 0000-0001-8100-7287

Raj Kumar 0009-0002-8639-476X

Nipur Singh 0000-0001-5683-8513

Project Number NO
Publication Date October 8, 2025
Submission Date May 13, 2025
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Sıngh, S., Kumar, K., Kumar, B., … Kumar, R. (2025). A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content. Turkish Journal of Engineering, 9(4), 754-767. https://doi.org/10.31127/tuje.1698748
AMA Sıngh S, Kumar K, Kumar B, Kumar R, Singh N. A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content. TUJE. October 2025;9(4):754-767. doi:10.31127/tuje.1698748
Chicago Sıngh, Satyendra, Krishan Kumar, Brajesh Kumar, Raj Kumar, and Nipur Singh. “A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content”. Turkish Journal of Engineering 9, no. 4 (October 2025): 754-67. https://doi.org/10.31127/tuje.1698748.
EndNote Sıngh S, Kumar K, Kumar B, Kumar R, Singh N (October 1, 2025) A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content. Turkish Journal of Engineering 9 4 754–767.
IEEE S. Sıngh, K. Kumar, B. Kumar, R. Kumar, and N. Singh, “A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content”, TUJE, vol. 9, no. 4, pp. 754–767, 2025, doi: 10.31127/tuje.1698748.
ISNAD Sıngh, Satyendra et al. “A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content”. Turkish Journal of Engineering 9/4 (October2025), 754-767. https://doi.org/10.31127/tuje.1698748.
JAMA Sıngh S, Kumar K, Kumar B, Kumar R, Singh N. A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content. TUJE. 2025;9:754–767.
MLA Sıngh, Satyendra et al. “A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content”. Turkish Journal of Engineering, vol. 9, no. 4, 2025, pp. 754-67, doi:10.31127/tuje.1698748.
Vancouver Sıngh S, Kumar K, Kumar B, Kumar R, Singh N. A Comparative Analysis of Deep Learning Techniques for Sentiment Analysis Using Social Media Content. TUJE. 2025;9(4):754-67.
Flag Counter