Research Article
BibTex RIS Cite

Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers

Year 2026, Volume: 10 Issue: 1, 63 - 75
https://doi.org/10.31127/tuje.1614119

Abstract

Fwhere the components are manufactured by depositing material layer by layer to form the desired shape and dimensions. Reverse shoulder arthroplasty (RSA) is a type of shoulder implant surgery to reconstruct the glenohumeral joint. Usage of bio compatible polymers in medical industry is increasing day by day to meet the customized requirements for the patients by replacing the metal structures which are high in weight and cost. A favourable combination of biocompatibility, bio non-degradability, corrosion resistance, strength, and relatively low weight makes the polymers as the material of choice in many surgical procedures. In this present study, specimens are fabricated by FFF method using the materials Acrylonitrile butadiene styrene (ABS) and High impact polystyrene (HIPS) to characterize the materials to identify the proper material for glenosphere and humeral cup. Layer height, print speed, infill density, and infill pattern with three levels of each parameter are used for fabrication. Testing for tensile, compressive, and wear properties is crucial for understanding a material's behavior and suitability in the field of orthopedic implants applications. These tests provide data on the material's strength, ability to withstand stress, and resistance to wear. Various statistical measures are evaluated to find the infleunce of input process parameters on required output responses. From the analysis, the best combination of process parameters among the experimented values is used for additive manufacturing of implants. Glenosphere and humeral cup is made using ABS and HIPS respectively for a preliminary investigation on the surface roughness and dimensional accuracy.

References

  • Emanuel Sachs, Michael Cima, James Cornie, David Brancazio, Jim Bredt, Alain Curodeau, Tailin Fan, Satbir Khanuja, Alan Lauder, John Lee, & Steve Michaels. (1993). Three-dimensional printing: The physics and implications of additive manufacturing. Annals of the CIRP, 42(1), 257-260. https://doi.org/10.1016/S0007-8506(07)62438-X
  • Selin Yalçın. (2024). IVPF-AHP integrated VIKOR methodology in supplier selection of three-dimensional (3D) printers. Turkish Journal of Engineering, 8(2), 235 – 253. https://doi.org/10.31127/tuje.1404694
  • Dolenc, A., & I. Mäkelä, I. (1994). Slicing procedures for Layered Manufacturing Techniques. Comput-Aided Design, 26(2), 119-126. https://doi.org/10.1016/0010-4485(94)90032-9
  • Malte Gebler, Anton, J.M., Schoot Uiterkamp, & Cindy Visser. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167. https://doi.org/10.1016/j.enpol.2014.08.033
  • Wang, C., Mai, W., & Shi, Q., (2024). Effect of printing parameters on mechanical properties and dimensional accuracy of 316L stainless steel fabricated by fused filament fabrication. Journal of Materials Engineering and Performance, 33, 11781-11793. https://doi.org/10.1007/s11665-023-08848-8
  • Duraisamy, R., Mohan Kumar, S., Rajesh Kannan, A., Siva Shanmugam, N., & Sankaranarayanasamy, K. (2021). Fatigue behavior of austenitic stainless steel 347 fabricated via wire arc additive manufacturing. Journal of Materials Engineering and Performance, 30, 6844-6850. https://doi.org/10.1007/s11665-021-06033-3
  • Abitha, H., Kavitha, V., Gomathi, B., & Balaji Ramachandran (2020). A recent investigation on shape memory alloys and polymers based materials on bio artificial implants-hip and knee joint. Materials Today: Proceedings, 33 (7), 4458-4466. https://doi.org/10.1016/j.matpr.2020.07.711
  • Tim Heitkamp, Karl Hilbig, Marijn Goutier, Simon Girnth, Nils Waldt, Günter Klawitter, & Thomas Vietor,. (2024). Characterization of mechanical properties, efficiency, and design considerations for the additive manufacturing of hybrid composites with continuous fibers. Hybrid Advances 5, 100146. https://doi.org/10.1016/j.hybadv.2024.100146
  • Mohammad Ali Farzin, Seyed Morteza Naghib, & Navid Rabiee, (2024). Bio-inspired and biomimetic composites based on biodegradable polymers for sensing applications with emphasis on early diagnosis of cancer. Chemical Engineering Journal, 493, 152445. https://doi.org/10.1016/j.cej.2024.152445
  • Giovanna Colucci, Marco Piano, Federico Lupone, Desiree Baruffaldi, Francesca Frascella, Federica Bondioli, & Massimo Messori. (2024). Printability study by selective laser sintering of bio-based samples obtained by using PBS as polymeric matrix. Polymer Testing, 131, 108327. https://doi.org/10.1016/j.polymertesting.2024.108327
  • Carl G. Schirmeistera, Timo Heesa, Erik H. Lichtb, & Rolf Mülhaupta. (2019). 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28, 152-159. https://doi.org/10.1016/j.addma.2019.05.003
  • Md Hosne Mobarak, Md. Aminul Islam, Nayem Hossain, Md. Zobair Al Mahmud, Md. Thohid Rayhan, Nushrat Jahan Nishi, & Mohammad Asaduzzaman Chowdhury. (2023). Recent advances of additive manufacturing in implant fabrication – A review. Applied Surface Science Advances, 18, 100462. https://doi.org/10.1016/j.apsadv.2023.100462
  • Azade Yeltan, Mehmet Halit Öztürk, & Suat Yilmaz. (2022). 3-dimensional Printing of PLA scaffolds for medical applications. Turkish Journal of Engineering, 6(4), 262-267. https://doi.org/10.31127/tuje.958192
  • Piotr Kowalczyk, Paulina Trzaskowsk, Ilona Łojszczyk, Rafał Podgórski, & Tomasz Ciach. (2019). Production of 3D printed polylactide scaffolds with surface grafted hydrogel coatings. Colloids and Surfaces B: Biointerfaces, 179, 136 – 142. https://doi.org/10.1016/j.colsurfb.2019.03.069
  • Carl W. Jones, Matthew Barrett, John Erickson, Idah Chatindiara, & Peter Poon. (2020). Larger polyethylene glenospheres in reverse shoulder arthroplasty: are they safe?. JSES International, 4, 944 – 951. https://doi.org/10.1016/j.jseint.2020.08.011
  • Carlos Torrens, Pau Guirro, Joan Miquel, & Fernando Santana. (2016). Influence of glenosphere size on the development of scapular notching: a prospective randomized study. Journal of Shoulder and Elbow Surgery, 25, 1735 – 1741. http://dx.doi.org/10.1016/j.jse.2016.07.006
  • Michael C. Cusick, Michael M. Hussey, Brandon M. Steen, Robert U. Hartzler, Rachel E. Clark, Derek J. Cuff, Andres F. Cabezas, Brandon G. Santoni, & Mark A. Frankle. (2015). Glenosphere dissociation after reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 24, 1061–1068. http://dx.doi.org/10.1016/j.jse.2014.12.019
  • lppolito, R., Luliano, L., & Gatto, A. (1995). Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish technique. Annals of the CIRP, 44(1), 157–160. https://doi.org/10.1016/S0007-8506(07)62296-3
  • Peng Wang, Bin Zou, Hongchuan Xiao, Shouling Ding, & Chuanzhen Huang. (2019). Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology, 271, 62 – 74. https://doi.org/10.1016/j.jmatprotec.2019.03.016
  • Benny Susanto, Muhammad Ibnu Rashyid, Fefria Tanbar, Hifni Mukhtar Ariyadi, & Muhammad Akhsin Muflikhun. (2024). Surface roughness and dimension accuracy data from hybrid manufacturing process using PLA material. Data in Brief, 54, 110477. https://doi.org/10.1016/j.dib.2024.110477
  • Pulak M Pandey, Venkata Reddy, V., & Sanjay G Dhande. (2003). Improvement of surface finish by staircase machining in fused deposition modeling. Journal of Materials Processing Technology, 132(1-3), 323 – 331. https://doi.org/10.1016/S09240136(02)00953-6
  • Campbell, R.I., Martorelli, M., & H.S. Lee, H.S. (2002). Surface roughness visualization for rapid prototyping models. Comput-Aided Design, 34(10), 717 – 725. https://doi.org/10.1016/S0010-4485(01)00201-9
  • Daekeon Ahn, Jin-Hwe Kweon, Soonman Kwon, Jungil Song, & Seokhee Lee. (2009). Representation of surface roughness in fused deposition modelling. Journal of Materials Processing Technology, 209(15 – 16), 5593 – 5600. https://doi.org/10.1016/j.jmatprotec.2009.05.016
  • Amirhossein Moghanian, Parviz Asdi, Mostafa Akbari, Mohammad Reza Mohammad Aliha, Ahmet Akif Kizilkurtlu, Ali Akpek & Sirus Safaee. (2025). New trends in 3D and 4D printed and orthopedic Implants: Methods, applications and future directions. Bioprinting. 48, e00406. https://doi.org/10.1016/j.bprint.2025.e00406
  • Peng Wang, Bin Zou, Shouling Ding, Lei LI, & Chuanzhen Huang. (2021). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34(9), 236 – 246. https://doi.org/10.1016/j.cja.2020.05.040
  • Ali Solouki, Mohammed Abbasolu, Aliha, M.R.M., & Mohammed Senisel Bachari. (2025). Analyzing the impact of hole radii on flexural strength of notched 3D printed components using Machine learning. Engineering Failure Analysis. 173, 109401. https://doi.org/10.1016/j.engfailanal.2025.109401
  • Michael Dawoud, Iman Taha, & Samy J. Ebeid. (2016). Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes, 21, 39 – 45, http://dx.doi.org/10.1016/j.jmapro.2015.11.002
  • Atefeh Rajabi Kafshgar, Saber Rostami, MRM Aliha, & Berto, F.(2021). Optimization of properties for 3D printed PLA material using taguchi, ANOVA and multi-objective methodologies. Procedia Structural Integrity, 34, 71 – 77. https://doi.org/10.1016/j.prostr.2021.12.011
  • Antonella Sola, Wei Juene Chong, Dejana Pejak Simunec, Yuncang Li, Adrian Trinchi, Ilias (Louis) Kyratzis, & Cuie Wen. (2023). Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication. Polymer Testing, 117, 107859. https://doi.org/10.1016/j.polymertesting.2022.107859
  • Anoop Kumar Sood, Ohdar, R.K., & Mahapatra, S.S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials and Design, 31(1), 287 – 295. https://doi.org/10.1016/j.matdes.2009.06.016
  • MártonTamás Birosz, Dániel Ledenyák, & Mátyás Andó. (2022). Effect of FDM infill patterns on mechanical properties. Polymer Testing, 113, 107654. https://doi.org/10.1016/j.polymertesting.2022.107654
  • Omar Ahmed Mohamed, Syed Hasan Masood, & Jahar Lal Bhowmik. (2018). Analysis of wear behavior of additively manufactured PC-ABS parts. Materials Letters, 230, 261 – 265, . https://doi.org/10.1016/j.matlet.2018.07.139
  • Nayan Dhakal, Xiaolong Wang, Cayetano Espejo, Ardian Morina, & Nazanin Emami. (2023). Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers. Journal of Materials Research and Technology, 23, 1252 – 1272. https://doi.org/10.1016/j.jmrt.2023.01.086
  • Huan Zhang, Shicheng Zhao, Zhong Xin, Chunlin Ye, Zhi Li, & Jincheng Xia. (2019). Wear resistance mechanism of ultrahigh-molecular-weight polyethylene determined from its structure - property relationships. Industrial & Engineering Chemistry Research. 58(42), 19519 – 19530. https://doi.org/10.1021/acs.iecr.9b04721
  • Teohn, S.H., Chan, W.H., & Thampuran, R. (2002). An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. Journal of Biomechanics, 35, 323 – 330. https://doi.org/10.1016/S0021-9290(01)00215-9
  • Ameri, B., Taheri-Behrooz, F., & Aliha, M.R.M. (2020). Fracture loads prediction of the modified 3D-printed ABS specimens mixed-mode I/II loading. Engineering Fracture Mechanics. 235, 107181. https://doi.org/10.1016/j.engfracmech.2020.107181
  • Ameri, B., Taheri-Behrooz, F., & Aliha, M.R.M. (2022). Mixed-mode tensile/shear fracture of the additively manufactured components under dynamic and static loads. Engineering Fracture Mechanics. 260, 108185. https://doi.org/10.1016/j.engfracmech.2021.108185
  • Ehsan Khedri, Hamid reza Karimi, Aliha, M.R.M., Nogol Nazemzadeh, Behnam Talebi & Reza Aleali. (2024). Tensile, flexural, and mode-I cracking behavior of interpenetrating phase composites (IPC), developed using additively manufactured PLA-based structures with different infill densities and eposxy resin polymer as matrix. Results in Engineering. 22, 102162. https://doi.org/10.1016/j.rineng.2024.102162
  • Aliha, M.R.M., Nogol Nazemzadeh, Ghoreishi, S.M.N., & Atefeh Rajabi Kafshgar. (2023). The impact of sterilization, body environment condition and raster orientation on tensile-shear cracking of sub-sized 3D printed specimens. Theoretical and Applied Fracture Mechanics. 126, 103953. https://doi.org/10.1016/j.tafmec.2023.103953
  • Soydan, Z., Şahin, F. İ. & Acaralı, N. (2024). Advancements in polymeric matrix composite production: A review on methods and approaches. Turkish Journal of Engineering, 8 (4), 677-686. https://doi.org/10.31127/tuje.1468998
  • Zor, M. M.,Kesim, S., Erbakan, B., Tülüce, F., Yoloğlu, A.,& Çakır, K. (2022). Direct pouring system design and optimization in steel castings. Engineering Applications, 1(2), 124-131
  • Gül, S.,Yağmur, A.,& Önel, E.E.(2023). Improving die life under hot forging conditions. Advanced Engineering Science, 3, 72-77
  • Kietan Shergill, Yao Chen, & Steve Bull. (2023). What controls layer thickness effects on the mechanical properties of additive manufactured polymers. Surface and Coatings Technology, 475, 130131. https://doi.org/10.1016/j.surfcoat.2023.130131
  • Sofia, J,, Ethiraj, N., & Nikolova, M.P. (2023). A novel method of fabricating multi-material acetabular liner using fused filament fabrication. Polymer Engineering and Science. 63(12), 4140-4152. https://doi.org/10.1002/pen.26514
  • Funda Kahraman & Banu Sugözü. (2019). An Integrated Approach Based on the Taguchi Method and Response Surface Methodology to Optimize Parameter Design of Asbestos-Free Brake Pad Material. Turkish Journal of Engineering. 3(3), 127-132. https://doi.org/10.31127/tuje.479458
  • Berat Barış Buldum & Süleyman Çınar Çağan. (2017). The Optimization of Surface Roughness of AZ91D Magnesium Alloy Using Anova in Ball Burnishing Process. Turkish Journal of Engineering. 1(1), 25-31. https://doi.org/10.31127/tuje.316860
  • Solouki, A., Aliha, M., & Makui. (2024). A Methodology for optimizing impact strength, Dimensional accuracy and costs of manufacturing with three-dimensional printing of polylactic acid. Arabian Journal of Science and Engineering. 49, 7545-7569. https://doi.org/10.1007/s13369-023-08422-3
  • Ali Solouki, Aliha, M.R.M., Ahmad Makui, Naghdali Choupani & Hamidreza Seiti. (2024). Analyzing the effects of printing parameters to minimize the dimensional deviation. Scientific Reports. 14(1), 27674. https://doi.org/10.1038/s41598-024-78952-9
  • Damien Combes, Romain Lancigu, Patrick Desbordes de Cepoy, Filippo Caporilli-Razza, Laurent Hubert, Louis Rony, & Christophe Aubé. (2019). “Imaging of shoulder arthroplasties and their complications: a pictorial review. Insights into Imaging, 10, 1 – 149. https://doi.org/10.1186/s13244-019-0788-5
  • Yazdani, M., Zarate, Kazimieras Zavadskas P.E., & Turskis Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501 – 2519. https://doi.org/10.1108/MD-05-2017-0458
  • Nazlı Ersoy. (2022). Normalization procedures for CoCoSo method: A comparative analysis under different scenarios. Dokuz Eylül University Journal of the Faculty of Business, 22(2), 217 – 234. https://doi.org/10.24889/ifede.974252
  • Lorenza Mattei, Francesca Di Puccio, Thomas J. Joyce, & Enrico Ciulli. (2016). Effect of size and dimensional tolerance of reverse total shoulder arthroplasty on wear: an in-silico study. Journal of the Mechancal Behavior of Biomedical Materials, 61,455 – 463. https://doi.org/10.1016/j.jmbbm.2016.03.033
There are 52 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

T Sivabalan 0000-0003-1683-7481

N Ethiraj 0000-0002-7174-5443

Early Pub Date October 28, 2025
Publication Date November 8, 2025
Submission Date January 6, 2025
Acceptance Date October 27, 2025
Published in Issue Year 2026 Volume: 10 Issue: 1

Cite

APA Sivabalan, T., & Ethiraj, N. (2025). Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers. Turkish Journal of Engineering, 10(1), 63-75. https://doi.org/10.31127/tuje.1614119
AMA Sivabalan T, Ethiraj N. Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers. TUJE. October 2025;10(1):63-75. doi:10.31127/tuje.1614119
Chicago Sivabalan, T, and N Ethiraj. “Material Characterization for Glenohumeral Joint Implant Manufactured by Fused Filament Fabrication Using Different Bio-Compatible Polymers”. Turkish Journal of Engineering 10, no. 1 (October 2025): 63-75. https://doi.org/10.31127/tuje.1614119.
EndNote Sivabalan T, Ethiraj N (October 1, 2025) Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers. Turkish Journal of Engineering 10 1 63–75.
IEEE T. Sivabalan and N. Ethiraj, “Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers”, TUJE, vol. 10, no. 1, pp. 63–75, 2025, doi: 10.31127/tuje.1614119.
ISNAD Sivabalan, T - Ethiraj, N. “Material Characterization for Glenohumeral Joint Implant Manufactured by Fused Filament Fabrication Using Different Bio-Compatible Polymers”. Turkish Journal of Engineering 10/1 (October2025), 63-75. https://doi.org/10.31127/tuje.1614119.
JAMA Sivabalan T, Ethiraj N. Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers. TUJE. 2025;10:63–75.
MLA Sivabalan, T and N Ethiraj. “Material Characterization for Glenohumeral Joint Implant Manufactured by Fused Filament Fabrication Using Different Bio-Compatible Polymers”. Turkish Journal of Engineering, vol. 10, no. 1, 2025, pp. 63-75, doi:10.31127/tuje.1614119.
Vancouver Sivabalan T, Ethiraj N. Material Characterization for Glenohumeral joint implant Manufactured by Fused Filament Fabrication using Different Bio-Compatible Polymers. TUJE. 2025;10(1):63-75.
Flag Counter