Research Article
BibTex RIS Cite

SİMETRİK KATMANLI KOMPOZİT KİRİŞLERDE ELYAF YÖNLENME AÇILARININ ÇOK-AMAÇLI OPTİMİZASYONU

Year 2022, Volume: 23 Issue: 2, 85 - 96, 29.12.2022

Abstract

Bu çalışmada, farklı sınır koşulları altında simetrik katmanlı kompozit bir kirişte elyaf yönlenme açılarının çok-amaçlı optimizasyonu gerçekleştirilmiştir. Elyaf yönlenme açıları tasarım parametreleri olarak seçilmiş olup, optimizasyon yöntemi olarak genetik algoritma (GA) kullanılmıştır. Optimizasyon işlemi her nesilde elde edilen minimum çökme, normal ve kayma gerilmesi parametrelerine bağlı olarak önceden tanımlanan bir uygunluk fonksiyonunun maksimize edilmesiyle gerçekleştirilmiştir. Maksimum uygunluk fonksiyon değerlerini ve bu değerlere karşılık gelen çökme, normal ve kayma gerilmelerini veren elyaf sıralanışları tablolarda sunulmuş, farklı ağırlık katsayıları ve sınır koşulları için uygunluk fonksiyonlarının nesil sayısına bağlı olarak değişimleri grafiklerle gösterilmiştir.

References

  • Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., (2007). Evolutionary algorithms for solving multi-objective problems. ISBN 978-0-387-33254-3, Springer, Second Edition, New York, USA.
  • De Munck, M., De Sutter, S., Verbruggen, S., Tysmans, T., Coelho, R. F., (2015). Multi-objective weight and cost optimization of hybrid composite-concrete beams. Composite Structures, 134, 369-377.
  • Fagan, E. M., De La Torre, O., Leen, S. B., Goggins, J., (2018). Validation of the multi-objective structural optimisation of a composite wind turbine blade. Composite Structures, 204, 567-577.
  • Gurugubelli, S., Kallepalli, D., (2014). Weight and deflection optimization of cantilever beam using a modified non-dominated sorting genetic algorithm. IOSR Journal of Engineering, 4 (3), 19-23.
  • Ho-Huu, V., Duong-Gia, D., Vo-Duy, T., Le-Duc, T., Nguyen-Thoi, T., (2018). An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures, Expert Systems With Applications, 102, 262-272.
  • Holland, J. H., (1995). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge, MA, USA.
  • Ikeya, K., Shimoda, M., Shi, J. X., (2016). Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Composite Structures, 135, 262-275.
  • Jacob, L. P., Senthil, S. V., (2006). Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Computers and Structures, 84, 2065-2080.
  • Jones, R. M., (1975). Mechanics of composite materials. McGraw-Hill, New York, USA.
  • Karaçam, F., Timarcı, T., (2014). Multi-objective optimization of stacking sequences for laminated composite beams by genetic algorithm. Applied Mechanics & Materials, 729, 89-94.
  • Karama, M., Afaq, K. S., Mistou, S., (2003). Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 40, 1525-1546.
  • Lin, C. C., Lee, Y. J., (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345.
  • Nikbakt, S., Kamarian, S., Shakeri, M., (2018). A review on optimization of composite structures part I: Laminated composites. Composite Structures, 195, 158-185.
  • Omkar, S. N., Khandelwal, R., Yathindra, S., Naik, G. N., Gopalakrishnan, S., (2008). Artificial immune system for multi-objective design optimization of composite structures. Engineering Applications of Artificial Intelligence, 21, 1416-1429. Rahul, S. G, Chakraborty, D., Dutta, A., (2006). Multi-objective optimization of hybrid laminates subjected to transverse impact. Composite Structures, 73 (3), 360-369.
  • Saravanos, D. A., Chamis, C., (1992). Multiobjective shape and material optimization of composite structures including damping. AIAA Journal, 30 (3), 805-813.
  • Senouci, A. B., Al-Ansari, M. S., (2009). Cost optimization of composite beams using genetic algorithms. Advances in Engineering Software, 40, 1112-1118.
  • Shrivastava, S., Mohite, P. M., Yadav, T., Malagaudanavar, A., (2018). Multi-objective multi-laminate design and optimization of a carbon fibre composite wing torsion box using evolutionary algorithm. Composite Structures, 185, 132-147.
  • Soldatos, K.P., Timarcı, T., (1993). A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindirical shell theories. Composite Structures, 25, 165-171.
  • Talic, E., Schirrer, A., Kozek, M., Jakubek, S., (2015). Multi-objective parameter identification of Euler–Bernoulli beams under axial load. Journal of Sound and Vibration, 341, 86-99.
  • Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H.C., Nguyen-Thoi, T., (2017). Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm. Composite Structures, 168, 498-509.
  • Walker, M., Reiss, T., Adali, S., (1997). Optimal design of symmetrically laminated plates for minimum deflection and weight. Composite Structures, 3 (3-4), 337-346.

MULTI-OBJECTIVE OPTIMIZATION OF FIBER ORIENTATION ANGLES IN SYMMETRICALLY LAMINATED COMPOSITE BEAMS

Year 2022, Volume: 23 Issue: 2, 85 - 96, 29.12.2022

Abstract

In this study, multi-objective optimization of fiber orientation angles in a symmetrically laminated composite beam is carried out under various boundary conditions. The fiber orientation angles are chosen as the design parameters and genetic algorithm (GA) is used as the optimization method. The optimization process is performed by maximizing a predefined fitness function depending on the minimum deflection, normal and shear stress parameters in each generation. The stacking sequences giving the maximum fitness function values and corresponding deflection, normal and shear stresses are presented in the tables, the variation of the fitness functions with respect to the number of generations are illustrated in graphics for different weight coefficients and boundary conditions.

References

  • Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., (2007). Evolutionary algorithms for solving multi-objective problems. ISBN 978-0-387-33254-3, Springer, Second Edition, New York, USA.
  • De Munck, M., De Sutter, S., Verbruggen, S., Tysmans, T., Coelho, R. F., (2015). Multi-objective weight and cost optimization of hybrid composite-concrete beams. Composite Structures, 134, 369-377.
  • Fagan, E. M., De La Torre, O., Leen, S. B., Goggins, J., (2018). Validation of the multi-objective structural optimisation of a composite wind turbine blade. Composite Structures, 204, 567-577.
  • Gurugubelli, S., Kallepalli, D., (2014). Weight and deflection optimization of cantilever beam using a modified non-dominated sorting genetic algorithm. IOSR Journal of Engineering, 4 (3), 19-23.
  • Ho-Huu, V., Duong-Gia, D., Vo-Duy, T., Le-Duc, T., Nguyen-Thoi, T., (2018). An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures, Expert Systems With Applications, 102, 262-272.
  • Holland, J. H., (1995). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge, MA, USA.
  • Ikeya, K., Shimoda, M., Shi, J. X., (2016). Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Composite Structures, 135, 262-275.
  • Jacob, L. P., Senthil, S. V., (2006). Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Computers and Structures, 84, 2065-2080.
  • Jones, R. M., (1975). Mechanics of composite materials. McGraw-Hill, New York, USA.
  • Karaçam, F., Timarcı, T., (2014). Multi-objective optimization of stacking sequences for laminated composite beams by genetic algorithm. Applied Mechanics & Materials, 729, 89-94.
  • Karama, M., Afaq, K. S., Mistou, S., (2003). Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 40, 1525-1546.
  • Lin, C. C., Lee, Y. J., (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345.
  • Nikbakt, S., Kamarian, S., Shakeri, M., (2018). A review on optimization of composite structures part I: Laminated composites. Composite Structures, 195, 158-185.
  • Omkar, S. N., Khandelwal, R., Yathindra, S., Naik, G. N., Gopalakrishnan, S., (2008). Artificial immune system for multi-objective design optimization of composite structures. Engineering Applications of Artificial Intelligence, 21, 1416-1429. Rahul, S. G, Chakraborty, D., Dutta, A., (2006). Multi-objective optimization of hybrid laminates subjected to transverse impact. Composite Structures, 73 (3), 360-369.
  • Saravanos, D. A., Chamis, C., (1992). Multiobjective shape and material optimization of composite structures including damping. AIAA Journal, 30 (3), 805-813.
  • Senouci, A. B., Al-Ansari, M. S., (2009). Cost optimization of composite beams using genetic algorithms. Advances in Engineering Software, 40, 1112-1118.
  • Shrivastava, S., Mohite, P. M., Yadav, T., Malagaudanavar, A., (2018). Multi-objective multi-laminate design and optimization of a carbon fibre composite wing torsion box using evolutionary algorithm. Composite Structures, 185, 132-147.
  • Soldatos, K.P., Timarcı, T., (1993). A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindirical shell theories. Composite Structures, 25, 165-171.
  • Talic, E., Schirrer, A., Kozek, M., Jakubek, S., (2015). Multi-objective parameter identification of Euler–Bernoulli beams under axial load. Journal of Sound and Vibration, 341, 86-99.
  • Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H.C., Nguyen-Thoi, T., (2017). Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm. Composite Structures, 168, 498-509.
  • Walker, M., Reiss, T., Adali, S., (1997). Optimal design of symmetrically laminated plates for minimum deflection and weight. Composite Structures, 3 (3-4), 337-346.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Fatih Karaçam 0000-0003-4986-3635

Taner Timarcı 0000-0003-3966-7614

Publication Date December 29, 2022
Acceptance Date November 2, 2022
Published in Issue Year 2022 Volume: 23 Issue: 2

Cite

IEEE F. Karaçam and T. Timarcı, “SİMETRİK KATMANLI KOMPOZİT KİRİŞLERDE ELYAF YÖNLENME AÇILARININ ÇOK-AMAÇLI OPTİMİZASYONU”, Trakya Univ J Eng Sci, vol. 23, no. 2, pp. 85–96, 2022.