Energy Efficiency Analysis of Waste Heat Recovery Applied to a Hot Water Boiler in a Public Building
Year 2024,
Volume: 25 Issue: 1, 53 - 64
Hacer Akhan
,
Özgür Özaydın
,
Samet Özdemir
Abstract
As a result of many applications in industrial plants and mechanical systems in public buildings, waste heat is generated, and significant amounts of energy and money can be saved by using this waste heat for different useful purposes in the enterprise before it is discharged into the atmosphere. In this project, the energy efficiency of the hot water boiler used in the heating system of the public building has been investigated. Within the scope of efficiency-enhancing applications, it has been determined at which rates savings will be achieved by utilising waste heat. The exhaust gases leaving the boiler at high temperature can be used in a heat exchanger and the waste heat can be utilised to heat the combustion air or feed water used in the boiler. The chimney of the hot water boiler system examined is proposed as economiser for heat recovery. Savings are achieved by not using fuel equivalent to the recovered energy. The cost analysis was calculated using the payback period method. Annual monetary savings of 29,049.0 USD/year were calculated in the economiser system. If economiser boiler is used in the public building, the payback period of the improvements will be 0.13 years.
Ethical Statement
This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support.
Supporting Institution
Trakya University Scientific Research Projects Unit (TÜBAP)
Project Number
TÜBAP-2023/175
Thanks
This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support.
References
- Andersson, E., Thollander, P. (2019). Key performance
indicators for energy management in the Swedish
pulp and paper industry, Energy Strategy Reviews,
24, 229-235.
- Ates, S.A., Durakbasa, N.M. (2012). Evaluation of
corporate energy management practices of energy
intensive industries in Turkey. Energy, 45, 81-91.
- Backlund, S., Broberg, S., Ottosson, M., Thollander, P.
(2012). Energy efficiency potentials and energy
management practices in Swedish firms (5-055-12),
ECEEE Ind. Sıcak summer Study, 669–677.
- Can, A. (2011). Binaların En Az Enerji İle Isıtılmasının
veya Soğutulmasının Termodinamik Birinci ve
İkinci Yasalarına Göre Değerlendirilmesi. X.
Ulusal Tesisat Mühendisliği Kongresi – 13/16
Nisan 2011/İzmir.
- Cagno, E., Worrel,l E., Trianni, A., Pugliese, G. (2013).
A novel approach for barriers to industrial energy
efficiency. Renew Sıcak sustain Energy Rev., 19,
290-308.
- Chen, B., Ye, X., Shen, J., Wang, S., Deng, S., & Yang,
J. (2021). Investigations on the energy efficiency
limits for industrial boiler operation and technical
requirements—taking China’s Hunan province as
an example. Energy, 220, 119672.
- Enerji Yöneticisi Ders Notları, T.C. Enerji ve tabii
Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre
Dairesi Başkanlığına, 2021.
- Hasanbeigi, A., Menke, C., Therdyothin, A. (2011).
Technical and cost assessment of energy efficiency
improvement and greenhouse gas emission
reduction potentials in Thai cement industry.
Energy Efficiency, 4, 93-113
- Hasan, A.M., Hoq, M.T., Thollander, P. (2018). Energy
management practices in Bangladesh’s iron and
steel industries. Energy strategy reviews, 22, 230-
236.
- Hasan, A., Rokonuzzaman, M., Tuhin, R.A.,
Salimullah, S.M., Ullah, M., Sakib, T.H. (2019).
Drivers and barriers to industrial energy efficiency
in textile industries of Bangladesh. Energies, 12,
1775.
- Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M.,
Monjurul, H. (2020). Empirical investigation of
energy management practices in cement industries
of Bangladesh, Energy, 212, 118741.
IEA - International Energy Agency. (2018). Energy
Efficiency 2018: Analysis and Outlooks to 2040. in:
Market Report Series. IEA/OECD. Ingarao, G.,
2017.
- Karlsson, M., Gebremedhin, A., Klugman, S., Henning,
D., Moshfegh, B. (2009). Regional energy system
optimization – potential for a regional heat market.
Appl Energy, 86(4):441–451.
- Klugman. S., Karlsson, M., Moshfegh, B. (2009). A
Swedish integrated pulp and paper mill – energy
optimisation and local heat cooperation. Energy
Pol, 37(7):2514–24.
- Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez,
C., Sakao, T., Ortiz, M.G. (2018). New perspectives
for green and sıcak sustainable chemistry and
engineering: approaches from sıcak sustainable
resource and energy use, management, and
transformation. J Clean Prod, 172, 227-232.
- Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont,
G.A. (2010). Energy optimization in a pulp and
paper mill cogeneration facility. Appl Energy, 87,
3514–3525.
- Rudberg, M., Waldemarsson, M., Lidestam, H. (2013).
Strategic perspectives on energy management: A
case study in the process industry, Applied Energy,
104, 487-496.
- Satyavada, H., & Baldi, S. (2018). Monitoring energy
efficiency of condensing boilers via hybrid first principle modelling and estimation. Energy, 142,
121-129.
- Schulz, V., Stehfest, H. (1984). Regional energy sıcak
supply optimization with multiple objectives. Eur J
Operat Res. 17(3):302–12.
- Tesema, G., Worrell, E. (2015). Energy efficiency
improvement potentials for the cement industry in
Ethiopia. Energy, 93, 2042-2052.
- Thollander, P., Ottosson, M. (2010). Energy
management practices in Swedish energy intensive
industries. J Clean Prod., 18, 1125-1133.
- Thollander, P., Danestig, M., Rohdin, P. (2007).
Energy policies for increased industrial energy
efficiency: evaluation of a local energy programme for manufacturing SMEs. Energy Pol.,
35(11):5774–5783.
- Wang, Y., Zou, Z., Lu, K., Li, Q., Hu, P., & Wang, D.
(2024). Modeling for on-line monitoring of carbon
burnout coefficient in boiler under partial load.
Energy, 288, 129859.
- Worrell, E., Martin, N., Price, L. (2000). Potentials for
energy efficiency improvement in the US cement
industry. Energy, 25, 1189-1214.
- Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch,
J. (2009). Industrial energy efficciency and climate
change mitigation. Energy Eff., 2, 109–123.
- Yang, H., Lin, X., Pan, H., Geng, S., Chen, Z., & Liu,
Y. (2023). Energy saving analysis and thermal
performance evaluation of a hydrogen-enriched
natural gas-fired condensing boiler. International
Journal of Hydrogen Energy, 48(50), 19279-19296.
- Yin, R.K. (2009). Case study research: design and
methods. 4th ed. Thousand Oaks, CA: SAGE Inc.
- Zhang, S., Worrell, E., Crijns-Graus, W. (2015).
Evaluating co-benefits of energy efficiency and air
pollution abatement in China’s cement industry.
Appl Energy, 147, 192-213.
Bir Kamu Binasındaki Sıcak Su Kazanına Uygulanan Atık Isı Geri Kazanımının Enerji Verimliliği Analizi
Year 2024,
Volume: 25 Issue: 1, 53 - 64
Hacer Akhan
,
Özgür Özaydın
,
Samet Özdemir
Abstract
Endüstriyel tesislerde birçok uygulama sonucunda ve kamu binalarında mekanik sistemlerde atık ısı meydana gelir ve bu atık ısının atmosfere atılmadan önce işletmede farklı faydalı amaçlar için kullanılması ile önemli miktarlarda enerji ve para tasarrufu sağlanabilir. Bu projede kamu binasının ısıtma sisteminde kullanılan sıcak su kazanının enerji verimliliği incelemesi yapılmıştır. Verim arttırıcı uygulamalar kapsamında atık ısıdan faydalanarak hangi oranlarda tasarruf sağlanacağı belirlenmiştir. Yüksek sıcaklıkta baca gazlarını bir ısı eşanjöründe kullanılıp atık ısı değerlendirilerek, kazanda kullanılan yakma havasının veya besleme suyunun ısıtılması sağlanabilir. İncelenen sıcak su kazanı sisteminin bacası ısı geri kazanımı yapılacak şekilde, ekonomizerli olarak önerilmektedir. Geri kazanılan enerjinin karşılığı kadar yakıt kullanılmayarak tasarruf sağlanmaktadır. Maliyet analizi geri ödeme süresi yöntemi kullanılarak hesaplanmıştır. Ekonomizerli sistemde yıllık 29.049,0 USD/yıl parasal tasarruf hesaplanmıştır. Eğer incelenen kamu binasında ekonomizerli kazan kullanılırsa, iyileştirmelerin geri ödeme süresi 0,13 yıl olacaktır.
Ethical Statement
Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir.
Supporting Institution
Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP)
Project Number
TÜBAP-2023/175
Thanks
Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir.
References
- Andersson, E., Thollander, P. (2019). Key performance
indicators for energy management in the Swedish
pulp and paper industry, Energy Strategy Reviews,
24, 229-235.
- Ates, S.A., Durakbasa, N.M. (2012). Evaluation of
corporate energy management practices of energy
intensive industries in Turkey. Energy, 45, 81-91.
- Backlund, S., Broberg, S., Ottosson, M., Thollander, P.
(2012). Energy efficiency potentials and energy
management practices in Swedish firms (5-055-12),
ECEEE Ind. Sıcak summer Study, 669–677.
- Can, A. (2011). Binaların En Az Enerji İle Isıtılmasının
veya Soğutulmasının Termodinamik Birinci ve
İkinci Yasalarına Göre Değerlendirilmesi. X.
Ulusal Tesisat Mühendisliği Kongresi – 13/16
Nisan 2011/İzmir.
- Cagno, E., Worrel,l E., Trianni, A., Pugliese, G. (2013).
A novel approach for barriers to industrial energy
efficiency. Renew Sıcak sustain Energy Rev., 19,
290-308.
- Chen, B., Ye, X., Shen, J., Wang, S., Deng, S., & Yang,
J. (2021). Investigations on the energy efficiency
limits for industrial boiler operation and technical
requirements—taking China’s Hunan province as
an example. Energy, 220, 119672.
- Enerji Yöneticisi Ders Notları, T.C. Enerji ve tabii
Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre
Dairesi Başkanlığına, 2021.
- Hasanbeigi, A., Menke, C., Therdyothin, A. (2011).
Technical and cost assessment of energy efficiency
improvement and greenhouse gas emission
reduction potentials in Thai cement industry.
Energy Efficiency, 4, 93-113
- Hasan, A.M., Hoq, M.T., Thollander, P. (2018). Energy
management practices in Bangladesh’s iron and
steel industries. Energy strategy reviews, 22, 230-
236.
- Hasan, A., Rokonuzzaman, M., Tuhin, R.A.,
Salimullah, S.M., Ullah, M., Sakib, T.H. (2019).
Drivers and barriers to industrial energy efficiency
in textile industries of Bangladesh. Energies, 12,
1775.
- Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M.,
Monjurul, H. (2020). Empirical investigation of
energy management practices in cement industries
of Bangladesh, Energy, 212, 118741.
IEA - International Energy Agency. (2018). Energy
Efficiency 2018: Analysis and Outlooks to 2040. in:
Market Report Series. IEA/OECD. Ingarao, G.,
2017.
- Karlsson, M., Gebremedhin, A., Klugman, S., Henning,
D., Moshfegh, B. (2009). Regional energy system
optimization – potential for a regional heat market.
Appl Energy, 86(4):441–451.
- Klugman. S., Karlsson, M., Moshfegh, B. (2009). A
Swedish integrated pulp and paper mill – energy
optimisation and local heat cooperation. Energy
Pol, 37(7):2514–24.
- Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez,
C., Sakao, T., Ortiz, M.G. (2018). New perspectives
for green and sıcak sustainable chemistry and
engineering: approaches from sıcak sustainable
resource and energy use, management, and
transformation. J Clean Prod, 172, 227-232.
- Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont,
G.A. (2010). Energy optimization in a pulp and
paper mill cogeneration facility. Appl Energy, 87,
3514–3525.
- Rudberg, M., Waldemarsson, M., Lidestam, H. (2013).
Strategic perspectives on energy management: A
case study in the process industry, Applied Energy,
104, 487-496.
- Satyavada, H., & Baldi, S. (2018). Monitoring energy
efficiency of condensing boilers via hybrid first principle modelling and estimation. Energy, 142,
121-129.
- Schulz, V., Stehfest, H. (1984). Regional energy sıcak
supply optimization with multiple objectives. Eur J
Operat Res. 17(3):302–12.
- Tesema, G., Worrell, E. (2015). Energy efficiency
improvement potentials for the cement industry in
Ethiopia. Energy, 93, 2042-2052.
- Thollander, P., Ottosson, M. (2010). Energy
management practices in Swedish energy intensive
industries. J Clean Prod., 18, 1125-1133.
- Thollander, P., Danestig, M., Rohdin, P. (2007).
Energy policies for increased industrial energy
efficiency: evaluation of a local energy programme for manufacturing SMEs. Energy Pol.,
35(11):5774–5783.
- Wang, Y., Zou, Z., Lu, K., Li, Q., Hu, P., & Wang, D.
(2024). Modeling for on-line monitoring of carbon
burnout coefficient in boiler under partial load.
Energy, 288, 129859.
- Worrell, E., Martin, N., Price, L. (2000). Potentials for
energy efficiency improvement in the US cement
industry. Energy, 25, 1189-1214.
- Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch,
J. (2009). Industrial energy efficciency and climate
change mitigation. Energy Eff., 2, 109–123.
- Yang, H., Lin, X., Pan, H., Geng, S., Chen, Z., & Liu,
Y. (2023). Energy saving analysis and thermal
performance evaluation of a hydrogen-enriched
natural gas-fired condensing boiler. International
Journal of Hydrogen Energy, 48(50), 19279-19296.
- Yin, R.K. (2009). Case study research: design and
methods. 4th ed. Thousand Oaks, CA: SAGE Inc.
- Zhang, S., Worrell, E., Crijns-Graus, W. (2015).
Evaluating co-benefits of energy efficiency and air
pollution abatement in China’s cement industry.
Appl Energy, 147, 192-213.