Research Article
BibTex RIS Cite

ARTIFICIAL NEURAL NETWORK MODELS OF CROSS-LINKED POLYETHYLENE

Year 2024, Volume: 25 Issue: 2, 129 - 141, 30.12.2024
https://doi.org/10.59314/tujes.1598718

Abstract

Cross-linked polyethylene (XLPE) is the most widely used insulator material in high-power cables. The complex electrical permittivity of the XLPE layer mostly determines the leakage admittance of the cable and the propagation speed of the signal. The complex electrical permittivity of XLPE depends on not only operating frequency but also temperature. In this study, Artificial neural networks (ANNs) are used to model the complex electrical permittivity parts of the XLPE. The structure of the ANNs is optimized. It has been found that the optimized ANN can predict the behavior of the XLPE with an R2 value of 0.99.

Ethical Statement

This study has been supported by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.; Project number: UPN-2003.

Supporting Institution

Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.

Project Number

UPN-2003

Thanks

This study has been supported by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.; Project number: UPN-2003.

References

  • Arikan, O., Uydur, C. C., & Kumru, C. F. (2022). Prediction of dielectric parameters of an aged MV cable: A comparison of curve fitting, decision tree and artificial neural network methods. Electric Power Systems Research, 208, 107892. https://doi.org/10.1016/j.epsr.2022.107892
  • Ashok, N., Soman, K. P., Samanta, M., Sruthi, M. S., Poornachandran, P., Devi V. G, S., & Sukumar, N. (2024). Polymer and Nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories. Advanced Machine Learning with Evolutionary and Metaheuristic Techniques, 297-322. https://doi.org/10.1007/978-981-99-9718-3_12
  • Boukezzi, L., & Boubakeur, A. (2013). Prediction of mechanical properties of XLPE cable insulation under thermal aging: neural network approach. IEEE Transactions on Dielectrics and Electrical Insulation, 20(6), 2125-2134. https://doi.org/10.1109/TDEI.2013.6678861
  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of chemical physics, 9(4), 341-351. https://doi.org/10.1063/1.1750906
  • Çanta, H., Mutlu, R., & Korkmaz Tan, R. (2024). Yeni Üretilen XLPE İzolasyonlu Tek Damarlı Bir Güç Kablosunun Kaçak Empedansının Hesabı. EMO Bilimsel Dergi, 14(1), 19-26.

ÇAPRAZ BAĞLI POLİETİLENİN YAPAY SİNİR AĞI MODELLERİ

Year 2024, Volume: 25 Issue: 2, 129 - 141, 30.12.2024
https://doi.org/10.59314/tujes.1598718

Abstract

Çapraz bağlı polietilen (XLPE), yüksek güçlü kablolarda en yaygın kullanılan yalıtkan malzemedir. XLPE katmanının kompleks elektriksel geçirgenliği, genellikle kablonun kaçak admitansını ve sinyalin yayılma hızını belirler. XLPE'nin karmaşık elektriksel geçirgenliği, sadece çalışma frekansına değil, aynı zamanda sıcaklığa da bağlıdır. Bu çalışmada, XLPE'nin karmaşık elektriksel geçirgenlik bileşenlerini modellemek için çok katmanlı algılayıcılar Yapay Sinir Ağları (YSA) kullanılmıştır YSAların yapısı optimize edilmiştir. Optimize edilmiş YSA'nın XLPE'nin davranışını 0.99 R2 değeriyle tahmin edebildiği bulunmuştur.

Project Number

UPN-2003

References

  • Arikan, O., Uydur, C. C., & Kumru, C. F. (2022). Prediction of dielectric parameters of an aged MV cable: A comparison of curve fitting, decision tree and artificial neural network methods. Electric Power Systems Research, 208, 107892. https://doi.org/10.1016/j.epsr.2022.107892
  • Ashok, N., Soman, K. P., Samanta, M., Sruthi, M. S., Poornachandran, P., Devi V. G, S., & Sukumar, N. (2024). Polymer and Nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories. Advanced Machine Learning with Evolutionary and Metaheuristic Techniques, 297-322. https://doi.org/10.1007/978-981-99-9718-3_12
  • Boukezzi, L., & Boubakeur, A. (2013). Prediction of mechanical properties of XLPE cable insulation under thermal aging: neural network approach. IEEE Transactions on Dielectrics and Electrical Insulation, 20(6), 2125-2134. https://doi.org/10.1109/TDEI.2013.6678861
  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of chemical physics, 9(4), 341-351. https://doi.org/10.1063/1.1750906
  • Çanta, H., Mutlu, R., & Korkmaz Tan, R. (2024). Yeni Üretilen XLPE İzolasyonlu Tek Damarlı Bir Güç Kablosunun Kaçak Empedansının Hesabı. EMO Bilimsel Dergi, 14(1), 19-26.
There are 5 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Rabia Korkmaz Tan 0000-0002-3777-2536

Hakan Çanta 0009-0004-2013-1478

Reşat Mutlu 0000-0003-0030-7136

Project Number UPN-2003
Publication Date December 30, 2024
Submission Date December 9, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

IEEE R. Korkmaz Tan, H. Çanta, and R. Mutlu, “ARTIFICIAL NEURAL NETWORK MODELS OF CROSS-LINKED POLYETHYLENE”, TUJES, vol. 25, no. 2, pp. 129–141, 2024, doi: 10.59314/tujes.1598718.