Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Kimya öğretmen adaylarının FeTeMM’e yönelik kavramlarındaki değişimin FeTeMM dersi boyunca incelenmesi

Year 2021, Volume 10, Issue 4, 251 - 273, 31.10.2021
https://doi.org/10.19128/turje.894588

Abstract

Bütünleşik fen, teknoloji, mühendislik ve matematik (FeTeMM) yaklaşımının kullanımına yönelik uluslararası ve ulusal çağrılar ışığında, FETEMM iş alanlarını tercih eden ve problem çözebilen bireyleri yetiştirmek için öğretmenlerin eğitilmesi zorunludur. Bütünleşik FeTeMM yaklaşımına yönelik eğitimin öğretmenlerin kavramlarını, alan bilgilerini ve uygulamalarını etkilediğini göz önüne alarak, bu çalışmanın amacı bütünleşik FeTeMM dersi boyunca kimya öğretmen adaylarının bütünleşik FeTeMM kavramlarının nasıl değiştiğini incelemektir. Çalışmada, 13 kimya öğretmen adayına 13 hafta süren bütünleşik FeTeMM dersinin başında ve sonunda FeTeMM’i nasıl kavradıklarına ilişkin bir FeTeMM Zihinsel Model Protokolü uygulanmıştır. Eğitim, bütünleşik FeTeMM eğitiminin ne olduğunun kavranması, FeTeMM aktivitelerinin uygulanması, mentorlar ile beraber çalışma ve öğretmen adaylarının kendi gelişimlerine odaklandıkları yansıtıcı düşünme boyutlarını içermektedir. Tümevarım, tümdengelim ve sürekli karşılaştırmalı analiz yöntemleri ile analiz edilen veriler ışığında, öğretmen adaylarının büyük çoğunluğunun FeTeMM kavramlarının geliştiği, özellikle FeTeMM kavramlarında mühendislik tasarım sürecini ve disiplinler arası ilişkiyi vurguladıkları bulunmuştur. Bu sonuçtan hareketle, bütünleşik FeTeMM öğretmen eğitiminde, öğretmen adaylarının bütünleşik FeTeMM kavramlarının geliştirilmesi için FeTeMM disiplinleri arasındaki ilişkiye ve mühendislik tasarım sürecine açık bir şekilde vurgu yapılmalıdır.

References

  • Akaygun, S. & Aslan-Tutak, F. (2016). STEM images revealing stem conceptions of preservice chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56-71. https://doi.org/10.18404/ijemst.44833
  • Akgunduz, D., Aydeniz, M., Cakmakci, G., Cavas, B., Corlu, M. S., Oner, T. & Ozdemir, S. (2015). A provisional agenda or a necessity? [White Paper], Aydın University
  • Aydin-Gunbatar, S., Ekiz-Kiran, B., & Oztay, E. S. (2020). Pre-service chemistry teachers’ pedagogical content knowledge for integrated STEM development with LESMeR model. Chemistry Education Research and Practice, 21(4), 1063-1082.
  • Aydin-Gunbatar, S., Tarkin-Celikkiran, A., Kutucu, E. S., & Ekiz-Kiran, B. (2018). The influence of a design-based elective STEM course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views. Chemistry Education Research and Practice, 19(3), 954-972.
  • Bartels, S. L. Rupe, K. M. & Lederman, J. S. (2019). Shaping preservice teachers’ understandings of STEM: A collaborative math and science methods approach. Journal of Science Teacher Education, 30(6), 666-680. https://doi.org/10.1080/1046560X.2019.1602803
  • Brophy, S., Klein, S. S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Bybee, R. W. (2010). What is STEM education?. Science, 329, 996. https://doi.org/10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA press.
  • Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. (4th ed.). Sage.
  • Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches. (3rd ed.). Sage.
  • Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720. https://doi.org/10.1080/09500693.2019.1638531
  • Education Council. (2015). National STEM school education strategy, 2016-2026. Retrieved from http://www.educationcouncil.edu.au/site/DefaultSite/filesystem/documents/National%20STEM%20School%20Education%20Strategy.pdf. Accessed 10 May 2021.
  • Ekiz-Kiran, B., Aydin-Gunbatar, S. (2021). Analysis of engineering elements of K-12 science standards in seven countries engaged in STEM education reform. Science & Education, 30, 849-882 https://doi.org/10.1007/s11191-021-00227-w
  • Elmas, R. & Gül, M. (2020). Examination of the applicability of stem education approach in the context of 2018 science curriculum. Journal of Turkish Chemical Society Section C: Chemistry Education (JOTCSC), 5(2), 224-247.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM education, 3(1), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Faikhamta, C. (2020). Pre-service science teachers’ views of the nature of STEM. Science Education International, 31(4), 356-366. https://doi.org/10.33828/sei.v31.i4.4
  • Guzey, S. S., Harwell, M., Moreno, M., Peralta, Y., & Moore, T. J. (2017). The impact of design-based STEM integration curricula on student achievement in engineering, science, and mathematics. Journal of Science Education and Technology, 26(2), 207-222. https://doi.org/10.1007/s10956-016-9673-x
  • Güler, F., Çakiroğlu, J. & Yılmaz-Tüzün, Ö. (2017). Pre-service science teachers' conceptions of stem education. Paper presented at the Educational Conference on Education Research, Kopenhagen, Denmark.
  • Horvath, M., Goodell, J. E. & Kosteas, V. D. (2018). Decisions to enter and continue in the teaching profession: Evidence from a sample of U.S. secondary STEM teacher candidates. Teaching and Teacher Education, 71, 57-65. https://doi.org/10.1016/j.tate.2017.12.0070742-051X
  • Johnson, C. C. (2013). Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367-368. https://doi.org/10.1111/ssm.12043
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
  • Kennedy, T. J. & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Margot, K. C. & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(2), 1-16. https://doi.org/10.1186/s40594-018-0151-2
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • Miles, M. B., & Huberman, M. (1994). An expanded sourcebook: Qualitative data analysis (2nd ed.). Sage Publications.
  • Ministry of Education (MOE), Ministry of Science and ICT (MSICT), & Korea Foundation for the Advancement of Science and Creativity (KOFAC). (2019). Scientific literacy for all Koreans: Korean science education standards for the next generation. Korea Foundation for the Advancement of Science and Creativity.
  • Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: a synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds.), Handbook of research on STEM education, (pp. 3–16). Routledge.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices (pp. 35-60). Purdue University Press.
  • Moore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. (2015). NGSS and the landscape of engineering in K-12 state science standards. Journal of Research in Science Teaching, 52(3), 296-318. https://doi.org/10.1002/tea.21199
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press.
  • Öztay, E. S. & Aydın-Günbatar, S. (2019). Kimya öğretmenlerinin FeTeMM'e yönelik zihinsel modellerindeki değişimin hizmet-içi öğretmen eğitimi boyunca incelenmesi. Uşak Üniversitesi Eğitim Araştırmaları Dergisi, 5(3), 22-43. DOI: 10.29065/usakead.645600
  • Pleasants, J., & Olson, J. K. (2019). What is engineering? Elaborating the nature of engineering for K‐12 education. Science Education, 103(1), 145-166. https://doi.org/10.1002/sce.21483
  • Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759-774. https://doi.org/10.1007/s10956-016-9633-5
  • Radloff, J., & Guzey, S. (2017). Investigating changes in preservice teachers’ conceptions of STEM education following video analysis and reflection. School Science and Mathematics. 117(3-4), 158-167. https://doi.org/10.1007/s10956-016-9633-5
  • Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467. https://doi.org/10.1080/1046560X.2017.1356671
  • Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343-362. https://doi.org/10.18404/ijemst.440338
  • Rinke, C. R., Gladstone-Brown, W., Kinlaw, C. R., & Cappiello, J. (2016). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116(6), 300-309. https://doi.org/10.1111/ssm.12185
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31-44. https://doi.org/10.1111/j.1949-8594.2011.00112.x
  • Sanders, M. E. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 1, 20–26.
  • Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0068-1
  • Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. http://dx.doi.org/10.5703/1288284314653
  • Timms, M. J., Moyle, K., Weldon, P. R., & Mitchell, P. (2018). Challenges in STEM learning in Australian schools: Literature and policy review. Retrieved from https://research.acer.edu.au/policyanalysismisc/28. Accessed 1 Dec 2020.
  • Vossen, T. E., Henze, I., De Vries, M. J., & Van Driel, J. H. (2020). Finding the connection between research and design: the knowledge development of STEM teachers in a professional learning community. International Journal of Technology and Design Education, 30, 295-320. https://doi.org/10.1007/s10798-019-09507-7
  • Wheeler, L., Whitworth, B. & Gonczi, A. (2014). Engineering design challenge, Science Teacher, 81(9), 30-36.
  • Wieselmann, J. R., Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2020). “I just do what the boys tell me”: Exploring small group student interactions in an integrated STEM unit. Journal of Research in Science Teaching, 57(1), 112-144. https://doi.org/10.18404/ijemst.42819
  • Zhan, X., Sun, D., Wan, Z. H., Hua, Y., & Xu, R. (2021). Investigating teacher perceptions of integrating engineering into science education in mainland China. International Journal of Science and Mathematics Education, 19(7), 1397-1420. https://doi.org/10.1007/s10763-020-10117-2

Examination of pre-service chemistry teachers’ STEM conceptions through an integrated STEM course

Year 2021, Volume 10, Issue 4, 251 - 273, 31.10.2021
https://doi.org/10.19128/turje.894588

Abstract

Due to international calls for the use of the integrated Science, Technology, Engineering, and Mathematics (STEM) approach to train learners pursuing STEM-related careers and citizens who are competitive problem solvers, teachers’ training for the integrated STEM approach is imperative. Given the importance of integrated STEM teacher training, this study aimed to examine how pre-service chemistry teachers’ integrated STEM conceptions have been changed through the integrated STEM course. The STEM reflection protocol was administered to 13 pre-service chemistry teachers both at the beginning and at the end of a 13-week-long integrated STEM course. The training included experiencing STEM activities, studying with mentors, and reflecting on own development. The deductive, inductive, and constant comparative data analysis revealed that most of the pre-service chemistry teachers enriched their STEM conceptions in terms of the engineering design process as a context and integration of the disciplines. However, very few participants’ STEM conceptions remained the same. Integrated STEM teacher education should include an explicit emphasis on disciplines’ integration and engineering design process to enhance pre-service teachers’ integrated STEM conceptions.

References

  • Akaygun, S. & Aslan-Tutak, F. (2016). STEM images revealing stem conceptions of preservice chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56-71. https://doi.org/10.18404/ijemst.44833
  • Akgunduz, D., Aydeniz, M., Cakmakci, G., Cavas, B., Corlu, M. S., Oner, T. & Ozdemir, S. (2015). A provisional agenda or a necessity? [White Paper], Aydın University
  • Aydin-Gunbatar, S., Ekiz-Kiran, B., & Oztay, E. S. (2020). Pre-service chemistry teachers’ pedagogical content knowledge for integrated STEM development with LESMeR model. Chemistry Education Research and Practice, 21(4), 1063-1082.
  • Aydin-Gunbatar, S., Tarkin-Celikkiran, A., Kutucu, E. S., & Ekiz-Kiran, B. (2018). The influence of a design-based elective STEM course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views. Chemistry Education Research and Practice, 19(3), 954-972.
  • Bartels, S. L. Rupe, K. M. & Lederman, J. S. (2019). Shaping preservice teachers’ understandings of STEM: A collaborative math and science methods approach. Journal of Science Teacher Education, 30(6), 666-680. https://doi.org/10.1080/1046560X.2019.1602803
  • Brophy, S., Klein, S. S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Bybee, R. W. (2010). What is STEM education?. Science, 329, 996. https://doi.org/10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA press.
  • Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. (4th ed.). Sage.
  • Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches. (3rd ed.). Sage.
  • Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720. https://doi.org/10.1080/09500693.2019.1638531
  • Education Council. (2015). National STEM school education strategy, 2016-2026. Retrieved from http://www.educationcouncil.edu.au/site/DefaultSite/filesystem/documents/National%20STEM%20School%20Education%20Strategy.pdf. Accessed 10 May 2021.
  • Ekiz-Kiran, B., Aydin-Gunbatar, S. (2021). Analysis of engineering elements of K-12 science standards in seven countries engaged in STEM education reform. Science & Education, 30, 849-882 https://doi.org/10.1007/s11191-021-00227-w
  • Elmas, R. & Gül, M. (2020). Examination of the applicability of stem education approach in the context of 2018 science curriculum. Journal of Turkish Chemical Society Section C: Chemistry Education (JOTCSC), 5(2), 224-247.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM education, 3(1), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Faikhamta, C. (2020). Pre-service science teachers’ views of the nature of STEM. Science Education International, 31(4), 356-366. https://doi.org/10.33828/sei.v31.i4.4
  • Guzey, S. S., Harwell, M., Moreno, M., Peralta, Y., & Moore, T. J. (2017). The impact of design-based STEM integration curricula on student achievement in engineering, science, and mathematics. Journal of Science Education and Technology, 26(2), 207-222. https://doi.org/10.1007/s10956-016-9673-x
  • Güler, F., Çakiroğlu, J. & Yılmaz-Tüzün, Ö. (2017). Pre-service science teachers' conceptions of stem education. Paper presented at the Educational Conference on Education Research, Kopenhagen, Denmark.
  • Horvath, M., Goodell, J. E. & Kosteas, V. D. (2018). Decisions to enter and continue in the teaching profession: Evidence from a sample of U.S. secondary STEM teacher candidates. Teaching and Teacher Education, 71, 57-65. https://doi.org/10.1016/j.tate.2017.12.0070742-051X
  • Johnson, C. C. (2013). Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367-368. https://doi.org/10.1111/ssm.12043
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
  • Kennedy, T. J. & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Margot, K. C. & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(2), 1-16. https://doi.org/10.1186/s40594-018-0151-2
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • Miles, M. B., & Huberman, M. (1994). An expanded sourcebook: Qualitative data analysis (2nd ed.). Sage Publications.
  • Ministry of Education (MOE), Ministry of Science and ICT (MSICT), & Korea Foundation for the Advancement of Science and Creativity (KOFAC). (2019). Scientific literacy for all Koreans: Korean science education standards for the next generation. Korea Foundation for the Advancement of Science and Creativity.
  • Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: a synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds.), Handbook of research on STEM education, (pp. 3–16). Routledge.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices (pp. 35-60). Purdue University Press.
  • Moore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. (2015). NGSS and the landscape of engineering in K-12 state science standards. Journal of Research in Science Teaching, 52(3), 296-318. https://doi.org/10.1002/tea.21199
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press.
  • Öztay, E. S. & Aydın-Günbatar, S. (2019). Kimya öğretmenlerinin FeTeMM'e yönelik zihinsel modellerindeki değişimin hizmet-içi öğretmen eğitimi boyunca incelenmesi. Uşak Üniversitesi Eğitim Araştırmaları Dergisi, 5(3), 22-43. DOI: 10.29065/usakead.645600
  • Pleasants, J., & Olson, J. K. (2019). What is engineering? Elaborating the nature of engineering for K‐12 education. Science Education, 103(1), 145-166. https://doi.org/10.1002/sce.21483
  • Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759-774. https://doi.org/10.1007/s10956-016-9633-5
  • Radloff, J., & Guzey, S. (2017). Investigating changes in preservice teachers’ conceptions of STEM education following video analysis and reflection. School Science and Mathematics. 117(3-4), 158-167. https://doi.org/10.1007/s10956-016-9633-5
  • Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467. https://doi.org/10.1080/1046560X.2017.1356671
  • Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343-362. https://doi.org/10.18404/ijemst.440338
  • Rinke, C. R., Gladstone-Brown, W., Kinlaw, C. R., & Cappiello, J. (2016). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116(6), 300-309. https://doi.org/10.1111/ssm.12185
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31-44. https://doi.org/10.1111/j.1949-8594.2011.00112.x
  • Sanders, M. E. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 1, 20–26.
  • Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0068-1
  • Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. http://dx.doi.org/10.5703/1288284314653
  • Timms, M. J., Moyle, K., Weldon, P. R., & Mitchell, P. (2018). Challenges in STEM learning in Australian schools: Literature and policy review. Retrieved from https://research.acer.edu.au/policyanalysismisc/28. Accessed 1 Dec 2020.
  • Vossen, T. E., Henze, I., De Vries, M. J., & Van Driel, J. H. (2020). Finding the connection between research and design: the knowledge development of STEM teachers in a professional learning community. International Journal of Technology and Design Education, 30, 295-320. https://doi.org/10.1007/s10798-019-09507-7
  • Wheeler, L., Whitworth, B. & Gonczi, A. (2014). Engineering design challenge, Science Teacher, 81(9), 30-36.
  • Wieselmann, J. R., Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2020). “I just do what the boys tell me”: Exploring small group student interactions in an integrated STEM unit. Journal of Research in Science Teaching, 57(1), 112-144. https://doi.org/10.18404/ijemst.42819
  • Zhan, X., Sun, D., Wan, Z. H., Hua, Y., & Xu, R. (2021). Investigating teacher perceptions of integrating engineering into science education in mainland China. International Journal of Science and Mathematics Education, 19(7), 1397-1420. https://doi.org/10.1007/s10763-020-10117-2

Details

Primary Language English
Subjects Education and Educational Research
Journal Section Research Articles
Authors

Sevgi AYDIN
YÜZÜNCÜ YIL ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
0000-0003-4707-1677
Türkiye


Elif Selcan ÖZTAY
YÜZÜNCÜ YIL ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
0000-0001-6156-1950
Türkiye


Betül EKİZ (Primary Author)
TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
0000-0002-0988-8507
Türkiye

Publication Date October 31, 2021
Published in Issue Year 2021, Volume 10, Issue 4

Cite

APA Aydın, S. , Öztay, E. S. & Ekiz, B. (2021). Examination of pre-service chemistry teachers’ STEM conceptions through an integrated STEM course . Turkish Journal of Education , 10 (4) , 251-273 . DOI: 10.19128/turje.894588

Creative Commons License TURJE is licensed to the public under a Creative Commons Attribution 4.0 license.