Research Article
BibTex RIS Cite

Pülverizatör Memelerinde Pülverizasyon Karakteristiklerinin Görüntü İşleme Yöntemiyle Belirlenmesi

Year 2020, Volume: 1 Issue: 1, 44 - 62, 30.06.2020

Abstract

Pülverizasyon uygulamalarında damla karakteristiklerini belirlemek için çoğunlukla suya duyarlı kartlar (WSP) kullanılmaktadır. WSP yüzeyine temas eden damlalar leke oluşturduğundan görüntü işleme yöntemiyle pülverizasyon karakteristikleri belirlenebilmektedir. Bu çalışmanın amacı; damla örnekleme çalışmalarına standart bir yaklaşım getirmek, görüntü işlemede operatör tercihine dayalı unsurları ortadan kaldırmak ve pülverizasyon karakteristiklerini istatistiksel yöntemlerle belirlemektir. Damla örnekleme çalışmaları için bir püskürtme simülatörü kullanılmış ve kontrollü şartlarda düşük hacimli (80 l ha-1) püskürtme uygulamaları yapılmıştır. Denemeler 9 kez tekrarlanmış ve toplanan WSP örnekleri taranarak görüntü işlemeyle leke analizi yapılmıştır. Görüntülerin eşik seviyesi ortalama grilik seviyesine göre belirlenmiştir. Yüzey kaplama oranı %30’un üzerinde olan WSP örnekleri analize dahil edilmemiştir. Leke boyutunu belirlemek için dairesellik faktörü 0.8’den küçük olan lekeler elimine edilmiştir. Damla karakteristiklerini belirlemek için makro yazılım oluşturulmuştur. Lekelerin yayılma faktörüne göre damlaların küresel çapı tahmin edilmiştir. Pülverizasyon karakteristiklerini belirlemek için tanımlayıcı (deskriptif) istatistik yöntemi kullanılmış ve hesaplamalar 20 çap sınıfı oluşturularak yapılmıştır. Araştırmada ortalama damla çapı (D10, D20, D30 ve D32), 100, 150, 200 ve 250 µm’den küçük çaplı damlaların hacimsel dağılımı (V100, V150, V200 ve V250), hacimsel çaplar (DV0.10, DV0.25, DV0.50, DV0.75 ve DV0.90), damla spektrumu yayılım faktörü (RSF), damla homojenlik katsayısı (r) ve damla tekdüzelik oranı (H) hesaplanmıştır. Tekrarlı yürütülen denemeler kendi aralarında karşılaştırıldığında damla çaplarının değişimi, damla spektrumunun yayılımı, kümülatif dağılım eğrileri ve damla homojenliğini tanımlayan faktörler arasında büyük bir uyumun olduğu gözlemlenmiştir. Korelasyon analizi sonucuna göre D32 ve DV0.50 çapları arasında pozitif yönlü bir ilişki bulunmuştur. Damla çapı arttıkça RSF değeri azalmıştır. r ve H değerleri arasındaki korelasyon istatistiksel açıdan çok önemli bulunmuş ve aralarında negatif yönlü bir ilişkinin olduğu belirlenmiştir.

References

  • Al Heidary M, Douzals JP, Sinfort C and Vallet A (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Prot., 63: 120-130. https://doi.org/10.1016/j.cropro.2014.05.006.
  • Albuz® (2016). Spray Nozzles, Albuz Catalogue 2016. http://albuz-spray.com (accessed April 2018).
  • Annamalai K and Puri IK (2006). Combustion Science and Engineering. CRC Press, ISBN 9780849320712, p. 1184.
  • ASABE Standard (2009). Spray Nozzle Classification by Droplet Spectra. ANSI/ASAE S572.1, MAR2009, p. 3.
  • Arag® (2017). Nozzle Holder, Caps and Nozzle Tips Catalogue (Revision). http://www.aragnet.com (accessed 2017).
  • Bari F, Ahmad MM, Sherwani A and Wani AA (2019). Determining the influence of nozzle on droplet spectrum and pesticide deposition in cabbage against Pieris brassicae (Linn.). J. Entomol. Zool. Stud., 7(1): 270-277.
  • Bete® (2019). Droplet size. BETE Deutschland GmbH, https://www.bete-nozzles.com/services/nozzle-basics/droplet-size.html (accessed December 2019)
  • Cerruto E, Failla S, Lomgo D and Manetto G (2016). Simulation of water sensitive papers for spray analysis. Agric Eng Int: CIGR Journal, 18 (4): 22-29.
  • Çilingir İ ve Dursun E (2010). Bitki Koruma Makinaları (Plant Protection Machineries). Ankara ÜUniversity Agricultural Faculty Publication Number: 151, ISBN: 978975-482-867-2, Ankara-Turkey, p. 248. (in Turkish)
  • Coates W (1996). Spraying technologies for cotton: Deposition and Efficacy. Appl. Eng. Agric., 12 (3): 287-296.
  • Cooper JF, Jones KA and Moawad G (1998). Low volume spraying on cotton: a comparison between spray distribution using charged and uncharged droplets applied by two spinning disc sprayers. Crop Prot., 17(9): 711-715.
  • Cunha JPAR, Farnese AC and Olivet JJ (2013). Computer programs for analysis of droplets sprayed on water sensitive papers. Planta Daninha, 31(3): 715-720. http://dx.doi.org/10.1590/S0100-83582013000300023.
  • Fox RD, Derksen RC, Cooper JA, Krause CR and Ozkan HE (2003). Visual and image system measurement of spray deposits using water-sensitive paper. Appl. Eng. Agric., 19(5): 549-552. http://dx.doi.org/10.13031/2013.15315.
  • Fox RD, Salyani M, Cooper JA and Brazee RD (2001). Spot size comparisons on oil-and water-sensitive paper. Appl. Eng. Agric., 17(2): 131-136. http://dx.doi.org/10.13031/2013.5454.
  • Fritz BK, Hoffmann WC, Bagley WE, Kruger GR, Czaczyk Z and Henry RS (2014). Measuring droplet size of agricultural spray nozzles-measurement distance and airspeed effects. Atomization Spray., 24 (9): 747-760. http://dx.doi.org/10.1615/AtomizSpr.2014008424.
  • Hassen NS and Sidik NAC (2018). Wind tunnel measurements on the effect of sprayer speed on the droplet size spectra. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43 (1): 104-111.
  • Hipkins P and Grisso RB (2014). Droplet Chart / Selection Guide. Virginia Cooperative Extention, Virginia State University, Publication, 442-031.
  • Hoffmann WC and Hewitt AJ (2005). Technical Note: Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric., 21 (6): 961-964. https://doi.org/10.13031/2013.20026.
  • Huang Y and Thompson SJ (2011). Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes. Int. J. Agric & Biol. Eng., 4 (4): 28-33.
  • Hypro® (2018). Hypro Nozzle Catalogue. http://www.hypro-eu.com (accessed April 2018).
  • Hypropumps (2006). SprayTip Catalog. http://www.hypropumps.com (accessed December 2017).
  • Ilıca A and Boz AF (2018). Design of a nozzle-height control system using a permanent magnet tubular linear synchronous motor. Journal of Agricultural Sciences, 24: 374-385. https://doi.org/10.15832/ankutbd.456662.
  • ISO 5682-1 Standard (1996). Equipment for crop protection - Spraying equipment - Part 1: Test methods for sprayer nozzles. 17 p.
  • Kruger GR, Klein RN and Ogg CL (2013). Spray Drift of Pesticides. Nebreska Extention. http://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm. (accessed December 2017).
  • Lechler® (2018). Agricultural Spray Nozzles, 2018 US Catalog. http://www.lechler.de (accessed April 2018).
  • Lipiński AJ and Lipiński S (2020). Binarizing water sensitive papers - how to assess the coverage area properly? Crop Prot., 127: 104949. https://doi.org/10.1016/j.cropro.2019.104949.
  • Matthews G, Bateman R and Miller P (2014). Pesticide Application Methods. Forth Edition, Wiley Blackwell. p. 536.
  • Miller PCH, Tuck CR, Murphy S and da Costa Ferreira M (2008). Measurements of the droplet velocities in sprays produced by different designs of agricultural spray nozzle. ILASS, Sep. 8-10, 2008, Como Lake, Italy, Paper ID ILASS08-00, p. 8.
  • Minaei S, Jafari M and Safaie N (2018). Design and development of a rose plant disease-detection and site-specific spraying system based on a combination of infrared and visible images. J. Agr. Sci. Tech., 20: 23-36.
  • Minov SV (2015). Integration of imaging techniques for the quantitative characterization of pesticide sprays. PhD Thesis. Ghent University, Belgium & University of Burgundy, France, p. 247.
  • Nascimento AB, de Oliveira GM, Fonseca ICD, Saab OJGA and Canteri MG (2013). Determination of the samples required of water-sensitive paper in experiments related spray technology. Semina Ci. agr., 34 (6): 2687-2696.
  • Nuyttens D, Baetens K, De Schampheleire M and Sonck B (2007). Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng., 97: 333-345.
  • Nuyttens D, Baetens K, De Schampheleire M and Sonck B (2006). PDPA laser based characterisation of agricultural sprays. Agricultural Engineering International: the CIGR Ejournal. Manuscript PM 06 024. Vol. VIII. December, 2006.
  • Özlüoymak ÖB and Bolat A (2020). Development and assessment of a novel imaging software for optimizing the spray parameters on water-sensitive papers. Comput. Electron. Agric., 168: 105104. https://doi.org/10.1016/j.compag.2019.105104.
  • PES (2019). Understanding droplet size. https://pesticidestewardship.org/pesticide-drift/understanding-droplet-size/ (accessed December 2019)
  • PNR (2019). Spray Technology. http://www.pnr.eu/wp-content/uploads/2017/05/SPRAY-TECHNOLOGY.pdf (accessed December 2019)
  • Sæbø O and Wighus R (2009). Droplet sizes from deluge nozzles. SP Fire Research AS, SPFR Report A15 107453: 1, p. 38.
  • Sanchez-Hermosilla J and Medina R (2004). Adaptive threshold for droplet spot analysis using water-sensitive paper. Appl. Eng. Agric., 20 (2): 547-551.
  • Sayıncı B (2016a). Poliasetal (POM) meme plakalarının orifis geometrisinde üretim kusurlarının eliptik fourier tanımlayıcılarıyla tespiti. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 57-73.
  • Sayıncı B (2016b). Detection of shape manufacturing defects of flat fan-pattern nozzle orifices using elliptic fourier descriptors. Tarım Bilim Derg., 22 (3): 317-330. https://doi.org/10.1501/Tarimbil_0000001390.
  • Sayinci B and Bastaban S (2011a). Patates ilaçlamasında farklı tip püskürtme memelerinin damla taşınma etkinlikleri. Iğdır University, Fen Bilimleri Enstitüsü Dergisi, 1 (1): 81-90. (in Turkish)
  • Sayinci B and Bastaban S (2011b). Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research, 6 (2): 352-362. https://doi.org/10.5897/AJAR10.480.
  • Sayinci B, Bastaban S and Sánchez-Hermosilla J (2012). Determination of optimal spot roundness variation interval for droplet size analysis on water sensitive papers. J. Agr. Sci. Tech-Iran, 14 (2): 285-298.
  • Sayıncı B, Çömlek R, Demir B and Çomaklı M (2019b). Effect of swirl plates on volumetric discharge rate and spray characteristics of hollow cone nozzles. Alinteri Journal of Agricultural Sciences, 34 (2): 103-110. https://doi.org/10.28955/alinterizbd.664729.
  • Sayıncı B, Demir B and Açık N (2019a). Pülverizatör memelerinde damla sıklığı ve pülverizasyon karakteristiklerinin tahminlenmesi. YYÜ Tarım Bilimleri Dergisi (Yuzuncu Yil University Journal of Agricultural Sciences), 29 (3): 458-465. https://doi.org/10.29133/yyutbd.573698.
  • Sayıncı B and Kara M (2015). The effects of strainer types on flow characteristics of anti-drift (AD) and multi-range (LU) flat-fan nozzles. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences, 21 (4): 558-571. https://doi.org/10.15832/tbd.29680.
  • Schick RJ (2008). Spray Technology Reference Guide: Understanding Drop Size. Bulletin No. 459C, Spraying System Co., US, p. 36. https://www.spray.com/literature_pdfs/B459C_Understanding_Drop_Size.pdf (accessed December 2019)
  • SNP (2019). Measuring droplet size. https://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements (accessed December 2019)
  • Song L, Liu X, Liu X and Zhang H (2019). Simulation and experimental study of static porosity droplets deposition test ring. International Workshop of Advanced Manufacturing and Automation, IWAMA 2019, Advanced Manufacturing and Automation IX: 89-97. https://doi.org/10.1007/978-981-15-2341-0_12.
  • Spandl (2010). Comparing Drift Reduction Technology. Winfield Solutions, Shoreview, Minnesota. https://www.extension.umn.edu/agriculture/agpro-fessionals/cpm/2010.
  • Srivastava AK, Goering CE and Rohrbach RG (1993). Engineering Principles of Agricultural Machines. ASAE Textbook Number 6, ISBN 0-929355-33-4, p. 601.
  • Toprak N, Sayıncı B, Demir B, Köylü F and Çetin N (2019). Determination of spray angle in sprayer nozzles using computer vision technique. 2nd Cilicia International Symposium on Engineering and Technology (CISET), 10-12 October 2019, Mersin-Turkey, pp. 25-29.
  • Tuck CR, Ellis MCB and Miller PCH (1997). Techniques for measurement of droplet size and velocity distributions in agricultural sprays. Crop Prot., 16 (7): 619-628. https://doi.org/10.1016/S0261-2194(97)00053-7.
  • Wolf (2017). Educating Applicators About Droplet Size. Wolf Consulting & Research LLC, https://tpsalliance.org/pdf/topics/Wolf-2-TPSA-2012.pdf (accessed December 2017).
  • Wolf RE and Daggupati NP (2009). Nozzle type effect on soybean canopy penetration. Appl. Eng. Agric., 25 (1): 23-30. https://doi.org/10.13031/2013.25426.
  • Womac AR, Etheridge R, Seibert A, Hogan D and Ray S (2001). Sprayer speed and venturi-nozzle effects on broadcast application uniformity. T. ASAE, 44 (6): 1437-1444.
  • Yağcıoğlu, A., 1993. Bitki Koruma Makinaları (Plant Protection Machineries). Ege University Agricultural Faculty Publication Number: 508, Bornova, İzmir-Turkey, p. 338. (in Turkish)
  • Yeşildal F, Yakut K, Karabey A and Kabakuş A (2013). Hava destekli nozulda sprey karakteristiklerinin belirlenmesi. ULIBTK’13 19. Ulusal Isı Bilimi ve Tekniği Kongresi, 9-12 Eylül, Samsun.
  • Yıldız N and Bircan H (1994). Araştırma ve Deneme Metotları (II. Baskı). Atatürk University, Agricultural Faculty Publication Number: 305, Erzurum-Turkey. (in Turkish)
  • Zeren Y and Bayat A (1995). Tarımsal Savaş Mekanizasyonu (Plant Protection Mechanization). Çukurova University Agricultural Faculty Publication Number: 108, Adana-Turkey, p. 351.
  • Zhu H, Salyani M, Fox RD (2011). A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric., 76: 38-43.

Determination of Spray Characteristics in Sprayer Nozzles Using Image Processing Method

Year 2020, Volume: 1 Issue: 1, 44 - 62, 30.06.2020

Abstract

Water sensitive papers (WSP) are often used to determine drop characteristics in spray applications. Since the droplets that come into contact with the surface of the WSP create a stain, the spray characteristics can be determined by the image processing method. The aim of this study is to bring a standard approach to drop sampling, eliminate the factors based on operator preference in image processing, and determine the spray characteristics by statistical methods. A spray simulator was used for drop sampling and low volume (80 l ha-1) spraying applications were performed under controlled conditions. The trials were repeated 9 times and the collected WSP samples were scanned and the image processing and stain analysis were performed. The thresholding level of the WSP images is determined according to the average grayscale level. WSP samples with a surface coating rate above 30% were not included in the analysis. Stains with a circularity factor of less than 0.8 were eliminated to determine the stain size. Macro module was created to determine the drop characteristics. The spherical diameter of the drops was estimated according to the spreading factor of the spots. A descriptive statistical method was used to determine the spray characteristics and the calculations were made by creating 20 droplet diameter classes. The average droplet diameter (D10, D20, D30 and D32), volumetric distribution of droplets smaller than 100, 150, 200 and 250 µm (V100, V150, V200 and V250), volumetric diameters (DV0.10, DV0.25, DV0.50, DV0.75 and DV0.90), droplet spectrum relative span factor (RSF), droplet uniformity coefficient (R) and droplet uniformity ratio (H) were calculated. When the repeated experiments were compared between themselves, it was observed that there was a great harmony between the factors that defined the change of droplet diameters, the spread of the droplet spectrum, cumulative distribution curves and droplet homogeneity. The correlation analysis found a positive correlation between D32 and DV0.50 diameters. As the drop diameter increased, the RSF value decreased. The correlation between r and H values was found to be very important statistically and it was determined that there was a negative correlation between them.

References

  • Al Heidary M, Douzals JP, Sinfort C and Vallet A (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Prot., 63: 120-130. https://doi.org/10.1016/j.cropro.2014.05.006.
  • Albuz® (2016). Spray Nozzles, Albuz Catalogue 2016. http://albuz-spray.com (accessed April 2018).
  • Annamalai K and Puri IK (2006). Combustion Science and Engineering. CRC Press, ISBN 9780849320712, p. 1184.
  • ASABE Standard (2009). Spray Nozzle Classification by Droplet Spectra. ANSI/ASAE S572.1, MAR2009, p. 3.
  • Arag® (2017). Nozzle Holder, Caps and Nozzle Tips Catalogue (Revision). http://www.aragnet.com (accessed 2017).
  • Bari F, Ahmad MM, Sherwani A and Wani AA (2019). Determining the influence of nozzle on droplet spectrum and pesticide deposition in cabbage against Pieris brassicae (Linn.). J. Entomol. Zool. Stud., 7(1): 270-277.
  • Bete® (2019). Droplet size. BETE Deutschland GmbH, https://www.bete-nozzles.com/services/nozzle-basics/droplet-size.html (accessed December 2019)
  • Cerruto E, Failla S, Lomgo D and Manetto G (2016). Simulation of water sensitive papers for spray analysis. Agric Eng Int: CIGR Journal, 18 (4): 22-29.
  • Çilingir İ ve Dursun E (2010). Bitki Koruma Makinaları (Plant Protection Machineries). Ankara ÜUniversity Agricultural Faculty Publication Number: 151, ISBN: 978975-482-867-2, Ankara-Turkey, p. 248. (in Turkish)
  • Coates W (1996). Spraying technologies for cotton: Deposition and Efficacy. Appl. Eng. Agric., 12 (3): 287-296.
  • Cooper JF, Jones KA and Moawad G (1998). Low volume spraying on cotton: a comparison between spray distribution using charged and uncharged droplets applied by two spinning disc sprayers. Crop Prot., 17(9): 711-715.
  • Cunha JPAR, Farnese AC and Olivet JJ (2013). Computer programs for analysis of droplets sprayed on water sensitive papers. Planta Daninha, 31(3): 715-720. http://dx.doi.org/10.1590/S0100-83582013000300023.
  • Fox RD, Derksen RC, Cooper JA, Krause CR and Ozkan HE (2003). Visual and image system measurement of spray deposits using water-sensitive paper. Appl. Eng. Agric., 19(5): 549-552. http://dx.doi.org/10.13031/2013.15315.
  • Fox RD, Salyani M, Cooper JA and Brazee RD (2001). Spot size comparisons on oil-and water-sensitive paper. Appl. Eng. Agric., 17(2): 131-136. http://dx.doi.org/10.13031/2013.5454.
  • Fritz BK, Hoffmann WC, Bagley WE, Kruger GR, Czaczyk Z and Henry RS (2014). Measuring droplet size of agricultural spray nozzles-measurement distance and airspeed effects. Atomization Spray., 24 (9): 747-760. http://dx.doi.org/10.1615/AtomizSpr.2014008424.
  • Hassen NS and Sidik NAC (2018). Wind tunnel measurements on the effect of sprayer speed on the droplet size spectra. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43 (1): 104-111.
  • Hipkins P and Grisso RB (2014). Droplet Chart / Selection Guide. Virginia Cooperative Extention, Virginia State University, Publication, 442-031.
  • Hoffmann WC and Hewitt AJ (2005). Technical Note: Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric., 21 (6): 961-964. https://doi.org/10.13031/2013.20026.
  • Huang Y and Thompson SJ (2011). Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes. Int. J. Agric & Biol. Eng., 4 (4): 28-33.
  • Hypro® (2018). Hypro Nozzle Catalogue. http://www.hypro-eu.com (accessed April 2018).
  • Hypropumps (2006). SprayTip Catalog. http://www.hypropumps.com (accessed December 2017).
  • Ilıca A and Boz AF (2018). Design of a nozzle-height control system using a permanent magnet tubular linear synchronous motor. Journal of Agricultural Sciences, 24: 374-385. https://doi.org/10.15832/ankutbd.456662.
  • ISO 5682-1 Standard (1996). Equipment for crop protection - Spraying equipment - Part 1: Test methods for sprayer nozzles. 17 p.
  • Kruger GR, Klein RN and Ogg CL (2013). Spray Drift of Pesticides. Nebreska Extention. http://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm. (accessed December 2017).
  • Lechler® (2018). Agricultural Spray Nozzles, 2018 US Catalog. http://www.lechler.de (accessed April 2018).
  • Lipiński AJ and Lipiński S (2020). Binarizing water sensitive papers - how to assess the coverage area properly? Crop Prot., 127: 104949. https://doi.org/10.1016/j.cropro.2019.104949.
  • Matthews G, Bateman R and Miller P (2014). Pesticide Application Methods. Forth Edition, Wiley Blackwell. p. 536.
  • Miller PCH, Tuck CR, Murphy S and da Costa Ferreira M (2008). Measurements of the droplet velocities in sprays produced by different designs of agricultural spray nozzle. ILASS, Sep. 8-10, 2008, Como Lake, Italy, Paper ID ILASS08-00, p. 8.
  • Minaei S, Jafari M and Safaie N (2018). Design and development of a rose plant disease-detection and site-specific spraying system based on a combination of infrared and visible images. J. Agr. Sci. Tech., 20: 23-36.
  • Minov SV (2015). Integration of imaging techniques for the quantitative characterization of pesticide sprays. PhD Thesis. Ghent University, Belgium & University of Burgundy, France, p. 247.
  • Nascimento AB, de Oliveira GM, Fonseca ICD, Saab OJGA and Canteri MG (2013). Determination of the samples required of water-sensitive paper in experiments related spray technology. Semina Ci. agr., 34 (6): 2687-2696.
  • Nuyttens D, Baetens K, De Schampheleire M and Sonck B (2007). Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng., 97: 333-345.
  • Nuyttens D, Baetens K, De Schampheleire M and Sonck B (2006). PDPA laser based characterisation of agricultural sprays. Agricultural Engineering International: the CIGR Ejournal. Manuscript PM 06 024. Vol. VIII. December, 2006.
  • Özlüoymak ÖB and Bolat A (2020). Development and assessment of a novel imaging software for optimizing the spray parameters on water-sensitive papers. Comput. Electron. Agric., 168: 105104. https://doi.org/10.1016/j.compag.2019.105104.
  • PES (2019). Understanding droplet size. https://pesticidestewardship.org/pesticide-drift/understanding-droplet-size/ (accessed December 2019)
  • PNR (2019). Spray Technology. http://www.pnr.eu/wp-content/uploads/2017/05/SPRAY-TECHNOLOGY.pdf (accessed December 2019)
  • Sæbø O and Wighus R (2009). Droplet sizes from deluge nozzles. SP Fire Research AS, SPFR Report A15 107453: 1, p. 38.
  • Sanchez-Hermosilla J and Medina R (2004). Adaptive threshold for droplet spot analysis using water-sensitive paper. Appl. Eng. Agric., 20 (2): 547-551.
  • Sayıncı B (2016a). Poliasetal (POM) meme plakalarının orifis geometrisinde üretim kusurlarının eliptik fourier tanımlayıcılarıyla tespiti. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 57-73.
  • Sayıncı B (2016b). Detection of shape manufacturing defects of flat fan-pattern nozzle orifices using elliptic fourier descriptors. Tarım Bilim Derg., 22 (3): 317-330. https://doi.org/10.1501/Tarimbil_0000001390.
  • Sayinci B and Bastaban S (2011a). Patates ilaçlamasında farklı tip püskürtme memelerinin damla taşınma etkinlikleri. Iğdır University, Fen Bilimleri Enstitüsü Dergisi, 1 (1): 81-90. (in Turkish)
  • Sayinci B and Bastaban S (2011b). Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research, 6 (2): 352-362. https://doi.org/10.5897/AJAR10.480.
  • Sayinci B, Bastaban S and Sánchez-Hermosilla J (2012). Determination of optimal spot roundness variation interval for droplet size analysis on water sensitive papers. J. Agr. Sci. Tech-Iran, 14 (2): 285-298.
  • Sayıncı B, Çömlek R, Demir B and Çomaklı M (2019b). Effect of swirl plates on volumetric discharge rate and spray characteristics of hollow cone nozzles. Alinteri Journal of Agricultural Sciences, 34 (2): 103-110. https://doi.org/10.28955/alinterizbd.664729.
  • Sayıncı B, Demir B and Açık N (2019a). Pülverizatör memelerinde damla sıklığı ve pülverizasyon karakteristiklerinin tahminlenmesi. YYÜ Tarım Bilimleri Dergisi (Yuzuncu Yil University Journal of Agricultural Sciences), 29 (3): 458-465. https://doi.org/10.29133/yyutbd.573698.
  • Sayıncı B and Kara M (2015). The effects of strainer types on flow characteristics of anti-drift (AD) and multi-range (LU) flat-fan nozzles. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences, 21 (4): 558-571. https://doi.org/10.15832/tbd.29680.
  • Schick RJ (2008). Spray Technology Reference Guide: Understanding Drop Size. Bulletin No. 459C, Spraying System Co., US, p. 36. https://www.spray.com/literature_pdfs/B459C_Understanding_Drop_Size.pdf (accessed December 2019)
  • SNP (2019). Measuring droplet size. https://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements (accessed December 2019)
  • Song L, Liu X, Liu X and Zhang H (2019). Simulation and experimental study of static porosity droplets deposition test ring. International Workshop of Advanced Manufacturing and Automation, IWAMA 2019, Advanced Manufacturing and Automation IX: 89-97. https://doi.org/10.1007/978-981-15-2341-0_12.
  • Spandl (2010). Comparing Drift Reduction Technology. Winfield Solutions, Shoreview, Minnesota. https://www.extension.umn.edu/agriculture/agpro-fessionals/cpm/2010.
  • Srivastava AK, Goering CE and Rohrbach RG (1993). Engineering Principles of Agricultural Machines. ASAE Textbook Number 6, ISBN 0-929355-33-4, p. 601.
  • Toprak N, Sayıncı B, Demir B, Köylü F and Çetin N (2019). Determination of spray angle in sprayer nozzles using computer vision technique. 2nd Cilicia International Symposium on Engineering and Technology (CISET), 10-12 October 2019, Mersin-Turkey, pp. 25-29.
  • Tuck CR, Ellis MCB and Miller PCH (1997). Techniques for measurement of droplet size and velocity distributions in agricultural sprays. Crop Prot., 16 (7): 619-628. https://doi.org/10.1016/S0261-2194(97)00053-7.
  • Wolf (2017). Educating Applicators About Droplet Size. Wolf Consulting & Research LLC, https://tpsalliance.org/pdf/topics/Wolf-2-TPSA-2012.pdf (accessed December 2017).
  • Wolf RE and Daggupati NP (2009). Nozzle type effect on soybean canopy penetration. Appl. Eng. Agric., 25 (1): 23-30. https://doi.org/10.13031/2013.25426.
  • Womac AR, Etheridge R, Seibert A, Hogan D and Ray S (2001). Sprayer speed and venturi-nozzle effects on broadcast application uniformity. T. ASAE, 44 (6): 1437-1444.
  • Yağcıoğlu, A., 1993. Bitki Koruma Makinaları (Plant Protection Machineries). Ege University Agricultural Faculty Publication Number: 508, Bornova, İzmir-Turkey, p. 338. (in Turkish)
  • Yeşildal F, Yakut K, Karabey A and Kabakuş A (2013). Hava destekli nozulda sprey karakteristiklerinin belirlenmesi. ULIBTK’13 19. Ulusal Isı Bilimi ve Tekniği Kongresi, 9-12 Eylül, Samsun.
  • Yıldız N and Bircan H (1994). Araştırma ve Deneme Metotları (II. Baskı). Atatürk University, Agricultural Faculty Publication Number: 305, Erzurum-Turkey. (in Turkish)
  • Zeren Y and Bayat A (1995). Tarımsal Savaş Mekanizasyonu (Plant Protection Mechanization). Çukurova University Agricultural Faculty Publication Number: 108, Adana-Turkey, p. 351.
  • Zhu H, Salyani M, Fox RD (2011). A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric., 76: 38-43.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Bahadır Sayıncı 0000-0001-7148-0855

Publication Date June 30, 2020
Submission Date March 12, 2020
Acceptance Date April 14, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

APA Sayıncı, B. (2020). Pülverizatör Memelerinde Pülverizasyon Karakteristiklerinin Görüntü İşleme Yöntemiyle Belirlenmesi. Turkish Journal of Agricultural Engineering Research, 1(1), 44-62.

26831

International peer double-blind reviewed journal

The articles in the Turkish Journal of Agricultural Engineering Research are open access articles and the articles are licensed under a Creative Commons Attribution 4.0 International License (CC-BY-NC-4.0)(https://creativecommons.org/licenses/by-nc/4.0/deed.en). This license allows third parties to share and adapt the content for non-commercial purposes with proper attribution to the original work. Please visit for more information this link https://creativecommons.org/licenses/by-nc/4.0/ 

Turkish Journal of Agricultural Engineering Research (TURKAGER) is indexed/abstracted in CABI, EBSCO, Information Matrix for the Analysis of Journals (MIAR), CAS Source Index (CASSI), Food Science & Technology Abstracts (FSTA), BASE, Directory Research Journals Indexing (DRJI), ROAD (Directory of Open Access Scholarly Resources), WorldCat, ResearchBible, Beluga-Catalogue of Hamburg Libraries, Advanced Science Index (ASI), Scientific Literature (Scilit), Scholar Article Journal Index (SAJI), IJIFACTOR Indexing, Electronic Journals Library (EZB), SJIF Master Journals List, International Institute of Organized Research (I2OR), International Services for Impact Factor and Indexing (ISIFI), ASOS INDEX, Cosmos, Technical Information Library (TIB), ROOTINDEXING, Scientific Indexing Services (SIS), Journal Tables of Contents, Quality Open Access Market.

Turkish Journal of Agricultural Engineering Research (TURKAGER) does not charge any application, publication, or subscription fees.

Publisher: Ebubekir ALTUNTAŞ

For articles citations to the articles of the Turkish Journal of Agricultural Engineering Research (TURKAGER), please click: