Research Article
BibTex RIS Cite

Gravimetric characteristics and friction parameters of common bean (Phaseolus vulgaris L.)

Year 2024, Volume: 5 Issue: 1, 76 - 93, 30.06.2024
https://doi.org/10.46592/turkager.1464050

Abstract

When designing appropriate machinery systems, equipment, and infrastructures for interacting with, cultivating, gathering, and agriculture-related processing, it is required to have an understanding of the engineering characteristics of agricultural products. This unpredictability makes it difficult to design or develop machines that can efficiently and effectively manage a wide range of product characteristics. Experimental analysis was used to accomplish the study's objective, which was to investigate the implications of variation on the gravimetric characteristics and frictional parameters of common bean (Phaseolus vulgaris L.) concerning the design of the threshing machine. The mean average values of gravimetric parameters were determined by analysing the experimental data: arithmetic mean diameter (7.042 ± 0.473 mm), geometric diameter (6.737 ± 0.463 mm), bulk density (781.20 ± 25.34 kg m-3), true density (1347.03 ± 143.0 kg m-3), porosity (41.385 ± 7.05%), width (6.316 ± 0.502 mm), thickness (4.962 ± 0.50 mm), projected area (49.194 ± 6.715 mm2), and volume of the seed (161.689 ± 3.778 mm3). The average moisture content values were found to be 11.214±1.185% on a dry basis, the static coefficient of friction varied between 0.276 and 0.386 on the surface of iron sheets, 0.294 to 0.435 on stainless steel, 0.317 to 0.434 on galvanized iron, 0.321 to 0.451 on medium density fiberboard, 0.319 to 0.480 on aluminum, 0.310 to 0.470 on painted sheets, 0.320 to 0.440 on glass, 0.333 to 0.447 on plastic, and 0.374 to 0.575 on rubber. Perforated sheet surfaces showed the highest static coefficients of friction, followed by rubber, plastic, plywood, glass, aluminum, galvanized iron, painted sheet, stainless steel, and iron sheet surfaces. These data are not only required for predicting loads in agricultural storage structures but are also needed to establish useful sources for the development of machinery for handling, cleaning, storing, transporting and drying, among other things.

References

  • Abera TA, Heiskanen J, Pellikka PK, Adhikari H and Maeda EE (2020). Climatic impacts of bushland to cropland conversion in Eastern Africa. Science of the Total Environment, 717: 137255. https://doi.org/ 10.1016/j.scitotenv.2020.137255
  • Altuntaş E and Yıldız M (2007). Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. Journal of Food Engineering, 78(1): 174-183. https://doi.org/ 10.1016/j.jfoodeng.2005.09.013
  • Amanuel T, Tadele T and Belay A (2022). Registration of milkesa, large-red seed food type common bean (Phaseolus vulgaris) varieties for Midland Areas of Bale and East Bale, Southeast Ethiopia. Journal of Plant Sciences, 10(1): 46-50. https://doi.org/10.11648/j.jps.20221001.17
  • Amin MN, Hossain MA and Roy KC (2004). Effects of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65(1): 83-87. https://doi.org/ 10.1016/j.jfoodeng.2003.12.006
  • Amsalu B, Negash K, Shiferaw T, Tumssa K, Tsegaye D, Claude RJ and Mukankusi CM (2018). Progress of common bean breeding and genetics research in Ethiopia. Ethiopian Journal of Crop Science, 6(3): 15-26.
  • Bako T and Aguda AC (2023). Effect of moisture content on the engineering properties of African yam bean (Sphenostylis stenocarpa) seed. Journal of Horticulture and Postharvest Research, 6(1): 15-26. https://doi.org/10.22077/jhpr.2022.5285.1276
  • Baryeh EA (2002). Physical properties of millet. Journal of Food Engineering, 51(1): 39-46. https://doi.org/ 10.1016/S0260-8774(01)00035-8
  • Bayano-Tejero S, Karkee M, Rodríguez-Lizana A and Sola-Guirado RR (2023). Estimation of harvested fruit weight using volume measurements with distance sensors: A case study with olives in a big box. Computers and Electronics in Agriculture, 205: 107620. https://doi.org/10.1016/j.compag.2023.107620
  • Befikadu D (2018). Postharvest losses in Ethiopia and opportunities for reduction: A review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 38: 249-262.
  • Betelhem A, Menbere B, Amsalu N, Ruelle ML, Alex M, Zemede A and Zerihun W (2020). Diversity, use and production of farmers’ varieties of common bean (Phaseolus vulgaris L., Fabaceae) in Southwestern and Northeastern Ethiopia. Genetic Resources and Crop Evolution, 67(2): 339-356. https://doi.org/10.1007/s10722-019-00877-4
  • Bhise SR, Kaur A and Manikantan MR (2014). Moisture dependent physical properties of wheat grain (PBW 621). International Journal of Engineering Practical Research, 3(2): 40-45. 1https://doi.org/10.14355/ijepr.2014.0302.03
  • Cetin M (2007). Physical properties of barbunia bean (Phaseolus vulgaris L.). Journal of Food Engineering, 80(1): 353-358. https://doi.org/10.1016/j.jfoodeng.2006.06.004
  • Chhabra N and Kaur A (2017). Studies on physical and engineering characteristics of maize, pearl millet and soybean. Journal of Pharmacognosy and Photochemistry, 6(6): 1-5.
  • Degirmencioglu A and Srivastava AK (1996). Development of screw conveyor performance models using dimensional analysis. Transactions of the ASAE, 39(5): 1757-1763. https:/doi.org/10.13031/2013.27695
  • Degirmencioglu A, Mohtar RH, Daher BT, Ozgunaltay-Ertugrul G and Ertugrul O (2019). Assessing the sustainability of crop production in the Gediz Basin, Turkey: A water, energy, and food nexus approach. Fresenius Environmental Bulletin, 28(4): 2511-2522.
  • Derese W, Shimelis A and Belay D (2021). Geometric characteristics and mass-volume-area properties of haricot beans (Phaseolus vulgaris L.): Effect of variety. International Journal of Food Properties, 24(1): 885-894. https://doi.org/ 10.1080/10942912.2021.1937210
  • Deshpande SD, Bal S and Ojha TP (1993). Physical properties of soybean. Journal of Agricultural Engineering Research, 56(2): 89-98. https://doi.org/10.1006/jaer.1993.1063
  • Dubale B (2018). Postharvest losses in Ethiopia and opportunities for reduction: A review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 38: 249-262.Elijah O, Rahman TA, Orikumhi I, Leow CY and Hindia MN (2018). An overview of internet of things (iot) and data analytics in agriculture: Benefits and challenges. IEEE Internet of things Journal, 5(5): 3758-3773. https://doi.org/10.1109/JIOT.2018.2844296
  • Emrani A and Berrada A (2023). Structural behavior and flow characteristics assessment of gravity energy storage system: Modeling and experimental validation. Journal of Energy Storage, 72: 108277. https://doi.org/ 10.1016/j.est.2023.108277
  • Ertuğrul Ö, Yılar M, Kır H and Kömekçi C (2022). Some physical, chemical, and germination properties of Peganum harmala L. seeds. Journal of Food Process Engineering, 45(2): e13967. https://doi.org/10.1111/jfpe.13967
  • FAO (2020). Food and Agriculture Organization crop production and trade data, Available at http://www.fao.org/faostat/en/ /#data/QC, Access: October 19, 2023.
  • FAOSTAT (2020). Food and agriculture data: Crops and livestock products. https://www.worldatlas.com/articles/the-world-s-top-dry-bean-producing-countries. Access: October 19, 2023.
  • Fernando S (2021). Production of protein-rich pulse ingredients through dry fractionation: A review. LWT, 141: p.110961. https://doi.org/ 10.1016/j.lwt.2021.110961
  • Fraser BM, Verma SS and Muir WE (1978). Some physical properties of faba beans. Journal of Agricultural Engineering Research, 23(1): 53-57. https://doi.org/ 10.1016/0021-8634(78)90079-3
  • Gupta RK, Arora G and Sharma R (2007). Aerodynamic properties of sunflower seed (Helianthus annuus L.). Journal of Food Engineering, 79(3): 899-904. https://doi.org/ 10.1016/j.jfoodeng.2006.03.010
  • Hacıseferoǧulları H, Gezer İ, Bahtiyarca Y and Mengeş HO (2003). Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major). Journal of Food Engineering, 60(4): 475-479. https://doi.org/ 10.1016/S0260-8774(03)00075-X
  • Isik E and Unal H (2011). Some engineering properties of white kidney beans (Phaseolus vulgaris L.). African Journal of Biotechnology, 10(82): 19126-19136. https://doi.org/10.5897/AJB11.1341
  • Jahanbakhshi A (2018). Determine some engineering properties of snake melon (Cucumis melo var. flexuosus). Agricultural Engineering International: CIGR Journal, 20(1): 171-176.
  • Kakade A, Khodke S, Jadhav S, Gajabe M and Othzes N (2019). Effect of moisture content on physical properties of soybean. International Journal of Current Microbiology and Applied Sciences, 8(4): 1770-1782. https://doi.org/10.20546/ijcmas.2019.804.206
  • Kefelegn N, Mekibib F and Dessalegn Y (2020). Genetic advancement and variability of released common bean (Phaseolus vulgaris L.) varieties from 1974–2009 GC in Ethiopia. Advances in Agriculture, 2020, 1-7. https://doi.org/10.1155/2020/1315436
  • Kumar N and Sharma AK (2021). Study on engineering properties of chickpea (Cicer arietinum) seeds in relation to design of threshing mechanism. The Pharma Innovation, 10(9): 455-458.
  • Mirzabe AH, Khazaei J, Chegini GR and Gholami O (2013). Some physical properties of almond nut and kernel and modeling dimensional properties. Agricultural Engineering International: CIGR Journal, 15(2): 256-265.
  • Mohsenin NN (1986). Physical properties of plant and animal materials: structure, physical characteristics and mechanical properties (2. rev. and updated ed). New York: Gordon and Breach Science Publisher.
  • Mpotokwane SM, Gaditlhatlhelwe E, Sebaka A and Jideani VA (2008). Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering, 89(1): 93-98. https://doi.org/ 10.1016/j.jfoodeng.2008.04.006
  • Nciri N, El-Mhamdi F, Ismail HB, Mansour AB and Fennira F (2014). Physical properties of three white bean varieties (Phaseolus vulgaris L.) grown in Tunisia. Journal of Applied Science and Agriculture, 9(11 Special): 195-200.
  • Omobuwajo TO, Akande EA, and Sanni LA (1999). Selected physical, mechanical and aerodynamic properties of African breadfruit (Treculia africana) seeds. Journal of Food Engineering, 40(4): 241-244. https://doi.org/ 10.1016/S0260-8774(99)00060-6
  • Ozturk I, Kara M, Yildiz C and Ercisli S (2009). Physico‐mechanical seed properties of the common Turkish bean (Phaseolus vulgaris) cultivars ‘Hinis’ and ‘Ispir’. New Zealand Journal of Crop and Horticultural Science, 37(1): 41-50. https://doi.org/10.1080/01140670909510248
  • Önal İ and Ertuğrul Ö (2011). Seed flow and in-row seed distribution uniformity of the top delivery type fluted roller for onion, carrot and canola seeds. Journal of Agricultural Sciences, 17: 10-23.
  • Pawar P, Shinde V, Raut A, Suke S, Kolpe K and Manna A (2023). An automated combined system for crop prediction and yield prediction using deep hybrid learning technique. In 2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). IEEE.
  • Sahin S and Sumnu SG (2006). Physical properties of foods: Springer science & Business media. Journal of Applied Science and Agriculture, 9(1):185-200.
  • Samrawit T (2023). Design and numerical analysis of rice grading machine for Ethiopian rice varieties (Doctoral dissertation, Bahir Dar University).
  • Saparita R, Hidajat DD and Kuala SI (2019). Statistical analysis on the geometric, physical and mechanical properties of dried robusta coffee cherry resulting from natural system processing. In IOP Conference Series: Earth and Environmental Science, 251(1): 012041. https://doi.org/10.1088/1755-1315/251/1/012041
  • Singh RP and Heldman DR (2009). Psychrometrics. In Introduction to Food Engineering, 4th ed, ed. R. P. Singh, and D. R. Heldman, 9, 571-593. Burlington, MA, USA: Academic Press.
  • Sirisomboon P, Kitchaiya P, Pholpho T and Mahuttanyavanitch W (2007). Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosystems Engineering, 97(2): 201-207. https://doi.org/10.1016/j.biosystemseng.2007.02.011
  • Sundaram PK, Singh AK and Kumar S (2014). Studies on some engineering properties of faba bean seeds. Journal of AgriSearch, 1(1): 4-8.
  • Tekalign A, Tadesse T and Asmare B (2022). Registration of Hora, small-red seed food type common bean (Phaseolus vulgaris) varieties for Midland Areas of Bale and East Bale, Southeast Ethiopia. Plant, 10(1): 36-39. https://doi.org/10.11648/j.jps.20221001.17
  • Wodajo D, Admassu S and Dereje B (2021). Geometric characteristics and mass-volume-area properties of haricot beans (Phaseolus vulgaris L.): Effect of variety. International Journal of Food Properties, 24(1): 885-894. https://doi.org/10.1080/10942912.2021.1937210
Year 2024, Volume: 5 Issue: 1, 76 - 93, 30.06.2024
https://doi.org/10.46592/turkager.1464050

Abstract

References

  • Abera TA, Heiskanen J, Pellikka PK, Adhikari H and Maeda EE (2020). Climatic impacts of bushland to cropland conversion in Eastern Africa. Science of the Total Environment, 717: 137255. https://doi.org/ 10.1016/j.scitotenv.2020.137255
  • Altuntaş E and Yıldız M (2007). Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. Journal of Food Engineering, 78(1): 174-183. https://doi.org/ 10.1016/j.jfoodeng.2005.09.013
  • Amanuel T, Tadele T and Belay A (2022). Registration of milkesa, large-red seed food type common bean (Phaseolus vulgaris) varieties for Midland Areas of Bale and East Bale, Southeast Ethiopia. Journal of Plant Sciences, 10(1): 46-50. https://doi.org/10.11648/j.jps.20221001.17
  • Amin MN, Hossain MA and Roy KC (2004). Effects of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65(1): 83-87. https://doi.org/ 10.1016/j.jfoodeng.2003.12.006
  • Amsalu B, Negash K, Shiferaw T, Tumssa K, Tsegaye D, Claude RJ and Mukankusi CM (2018). Progress of common bean breeding and genetics research in Ethiopia. Ethiopian Journal of Crop Science, 6(3): 15-26.
  • Bako T and Aguda AC (2023). Effect of moisture content on the engineering properties of African yam bean (Sphenostylis stenocarpa) seed. Journal of Horticulture and Postharvest Research, 6(1): 15-26. https://doi.org/10.22077/jhpr.2022.5285.1276
  • Baryeh EA (2002). Physical properties of millet. Journal of Food Engineering, 51(1): 39-46. https://doi.org/ 10.1016/S0260-8774(01)00035-8
  • Bayano-Tejero S, Karkee M, Rodríguez-Lizana A and Sola-Guirado RR (2023). Estimation of harvested fruit weight using volume measurements with distance sensors: A case study with olives in a big box. Computers and Electronics in Agriculture, 205: 107620. https://doi.org/10.1016/j.compag.2023.107620
  • Befikadu D (2018). Postharvest losses in Ethiopia and opportunities for reduction: A review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 38: 249-262.
  • Betelhem A, Menbere B, Amsalu N, Ruelle ML, Alex M, Zemede A and Zerihun W (2020). Diversity, use and production of farmers’ varieties of common bean (Phaseolus vulgaris L., Fabaceae) in Southwestern and Northeastern Ethiopia. Genetic Resources and Crop Evolution, 67(2): 339-356. https://doi.org/10.1007/s10722-019-00877-4
  • Bhise SR, Kaur A and Manikantan MR (2014). Moisture dependent physical properties of wheat grain (PBW 621). International Journal of Engineering Practical Research, 3(2): 40-45. 1https://doi.org/10.14355/ijepr.2014.0302.03
  • Cetin M (2007). Physical properties of barbunia bean (Phaseolus vulgaris L.). Journal of Food Engineering, 80(1): 353-358. https://doi.org/10.1016/j.jfoodeng.2006.06.004
  • Chhabra N and Kaur A (2017). Studies on physical and engineering characteristics of maize, pearl millet and soybean. Journal of Pharmacognosy and Photochemistry, 6(6): 1-5.
  • Degirmencioglu A and Srivastava AK (1996). Development of screw conveyor performance models using dimensional analysis. Transactions of the ASAE, 39(5): 1757-1763. https:/doi.org/10.13031/2013.27695
  • Degirmencioglu A, Mohtar RH, Daher BT, Ozgunaltay-Ertugrul G and Ertugrul O (2019). Assessing the sustainability of crop production in the Gediz Basin, Turkey: A water, energy, and food nexus approach. Fresenius Environmental Bulletin, 28(4): 2511-2522.
  • Derese W, Shimelis A and Belay D (2021). Geometric characteristics and mass-volume-area properties of haricot beans (Phaseolus vulgaris L.): Effect of variety. International Journal of Food Properties, 24(1): 885-894. https://doi.org/ 10.1080/10942912.2021.1937210
  • Deshpande SD, Bal S and Ojha TP (1993). Physical properties of soybean. Journal of Agricultural Engineering Research, 56(2): 89-98. https://doi.org/10.1006/jaer.1993.1063
  • Dubale B (2018). Postharvest losses in Ethiopia and opportunities for reduction: A review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 38: 249-262.Elijah O, Rahman TA, Orikumhi I, Leow CY and Hindia MN (2018). An overview of internet of things (iot) and data analytics in agriculture: Benefits and challenges. IEEE Internet of things Journal, 5(5): 3758-3773. https://doi.org/10.1109/JIOT.2018.2844296
  • Emrani A and Berrada A (2023). Structural behavior and flow characteristics assessment of gravity energy storage system: Modeling and experimental validation. Journal of Energy Storage, 72: 108277. https://doi.org/ 10.1016/j.est.2023.108277
  • Ertuğrul Ö, Yılar M, Kır H and Kömekçi C (2022). Some physical, chemical, and germination properties of Peganum harmala L. seeds. Journal of Food Process Engineering, 45(2): e13967. https://doi.org/10.1111/jfpe.13967
  • FAO (2020). Food and Agriculture Organization crop production and trade data, Available at http://www.fao.org/faostat/en/ /#data/QC, Access: October 19, 2023.
  • FAOSTAT (2020). Food and agriculture data: Crops and livestock products. https://www.worldatlas.com/articles/the-world-s-top-dry-bean-producing-countries. Access: October 19, 2023.
  • Fernando S (2021). Production of protein-rich pulse ingredients through dry fractionation: A review. LWT, 141: p.110961. https://doi.org/ 10.1016/j.lwt.2021.110961
  • Fraser BM, Verma SS and Muir WE (1978). Some physical properties of faba beans. Journal of Agricultural Engineering Research, 23(1): 53-57. https://doi.org/ 10.1016/0021-8634(78)90079-3
  • Gupta RK, Arora G and Sharma R (2007). Aerodynamic properties of sunflower seed (Helianthus annuus L.). Journal of Food Engineering, 79(3): 899-904. https://doi.org/ 10.1016/j.jfoodeng.2006.03.010
  • Hacıseferoǧulları H, Gezer İ, Bahtiyarca Y and Mengeş HO (2003). Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major). Journal of Food Engineering, 60(4): 475-479. https://doi.org/ 10.1016/S0260-8774(03)00075-X
  • Isik E and Unal H (2011). Some engineering properties of white kidney beans (Phaseolus vulgaris L.). African Journal of Biotechnology, 10(82): 19126-19136. https://doi.org/10.5897/AJB11.1341
  • Jahanbakhshi A (2018). Determine some engineering properties of snake melon (Cucumis melo var. flexuosus). Agricultural Engineering International: CIGR Journal, 20(1): 171-176.
  • Kakade A, Khodke S, Jadhav S, Gajabe M and Othzes N (2019). Effect of moisture content on physical properties of soybean. International Journal of Current Microbiology and Applied Sciences, 8(4): 1770-1782. https://doi.org/10.20546/ijcmas.2019.804.206
  • Kefelegn N, Mekibib F and Dessalegn Y (2020). Genetic advancement and variability of released common bean (Phaseolus vulgaris L.) varieties from 1974–2009 GC in Ethiopia. Advances in Agriculture, 2020, 1-7. https://doi.org/10.1155/2020/1315436
  • Kumar N and Sharma AK (2021). Study on engineering properties of chickpea (Cicer arietinum) seeds in relation to design of threshing mechanism. The Pharma Innovation, 10(9): 455-458.
  • Mirzabe AH, Khazaei J, Chegini GR and Gholami O (2013). Some physical properties of almond nut and kernel and modeling dimensional properties. Agricultural Engineering International: CIGR Journal, 15(2): 256-265.
  • Mohsenin NN (1986). Physical properties of plant and animal materials: structure, physical characteristics and mechanical properties (2. rev. and updated ed). New York: Gordon and Breach Science Publisher.
  • Mpotokwane SM, Gaditlhatlhelwe E, Sebaka A and Jideani VA (2008). Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering, 89(1): 93-98. https://doi.org/ 10.1016/j.jfoodeng.2008.04.006
  • Nciri N, El-Mhamdi F, Ismail HB, Mansour AB and Fennira F (2014). Physical properties of three white bean varieties (Phaseolus vulgaris L.) grown in Tunisia. Journal of Applied Science and Agriculture, 9(11 Special): 195-200.
  • Omobuwajo TO, Akande EA, and Sanni LA (1999). Selected physical, mechanical and aerodynamic properties of African breadfruit (Treculia africana) seeds. Journal of Food Engineering, 40(4): 241-244. https://doi.org/ 10.1016/S0260-8774(99)00060-6
  • Ozturk I, Kara M, Yildiz C and Ercisli S (2009). Physico‐mechanical seed properties of the common Turkish bean (Phaseolus vulgaris) cultivars ‘Hinis’ and ‘Ispir’. New Zealand Journal of Crop and Horticultural Science, 37(1): 41-50. https://doi.org/10.1080/01140670909510248
  • Önal İ and Ertuğrul Ö (2011). Seed flow and in-row seed distribution uniformity of the top delivery type fluted roller for onion, carrot and canola seeds. Journal of Agricultural Sciences, 17: 10-23.
  • Pawar P, Shinde V, Raut A, Suke S, Kolpe K and Manna A (2023). An automated combined system for crop prediction and yield prediction using deep hybrid learning technique. In 2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). IEEE.
  • Sahin S and Sumnu SG (2006). Physical properties of foods: Springer science & Business media. Journal of Applied Science and Agriculture, 9(1):185-200.
  • Samrawit T (2023). Design and numerical analysis of rice grading machine for Ethiopian rice varieties (Doctoral dissertation, Bahir Dar University).
  • Saparita R, Hidajat DD and Kuala SI (2019). Statistical analysis on the geometric, physical and mechanical properties of dried robusta coffee cherry resulting from natural system processing. In IOP Conference Series: Earth and Environmental Science, 251(1): 012041. https://doi.org/10.1088/1755-1315/251/1/012041
  • Singh RP and Heldman DR (2009). Psychrometrics. In Introduction to Food Engineering, 4th ed, ed. R. P. Singh, and D. R. Heldman, 9, 571-593. Burlington, MA, USA: Academic Press.
  • Sirisomboon P, Kitchaiya P, Pholpho T and Mahuttanyavanitch W (2007). Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosystems Engineering, 97(2): 201-207. https://doi.org/10.1016/j.biosystemseng.2007.02.011
  • Sundaram PK, Singh AK and Kumar S (2014). Studies on some engineering properties of faba bean seeds. Journal of AgriSearch, 1(1): 4-8.
  • Tekalign A, Tadesse T and Asmare B (2022). Registration of Hora, small-red seed food type common bean (Phaseolus vulgaris) varieties for Midland Areas of Bale and East Bale, Southeast Ethiopia. Plant, 10(1): 36-39. https://doi.org/10.11648/j.jps.20221001.17
  • Wodajo D, Admassu S and Dereje B (2021). Geometric characteristics and mass-volume-area properties of haricot beans (Phaseolus vulgaris L.): Effect of variety. International Journal of Food Properties, 24(1): 885-894. https://doi.org/10.1080/10942912.2021.1937210
There are 47 citations in total.

Details

Primary Language English
Subjects Agricultural Machine Systems
Journal Section Research Articles
Authors

Biniam Zewdie Ghebrekidan 0000-0003-3713-8049

Adesoji Matthew Olaniyan This is me 0000-0001-6388-1587

Amana Wako This is me 0000-0002-5861-3403

Alemayehu Girma Tadesse This is me 0009-0009-4323-3852

Dereje Alemu 0000-0003-2267-1211

Tamrat Lema This is me 0009-0006-3813-1841

Early Pub Date June 12, 2024
Publication Date June 30, 2024
Submission Date April 3, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Ghebrekidan, B. Z., Olaniyan, A. M., Wako, A., Tadesse, A. G., et al. (2024). Gravimetric characteristics and friction parameters of common bean (Phaseolus vulgaris L.). Turkish Journal of Agricultural Engineering Research, 5(1), 76-93. https://doi.org/10.46592/turkager.1464050

26831    32449  32450 32451 3245232453

International peer double-blind reviewed journal

The articles in the Turkish Journal of Agricultural Engineering Research are open access articles and the articles are licensed under a Creative Commons Attribution 4.0 International License (CC-BY-NC-4.0)(https://creativecommons.org/licenses/by-nc/4.0/deed.en). This license allows third parties to share and adapt the content for non-commercial purposes with proper attribution to the original work. Please visit for more information this link https://creativecommons.org/licenses/by-nc/4.0/ 

Turkish Journal of Agricultural Engineering Research (TURKAGER) is indexed/abstracted in Information Matrix for the Analysis of Journals (MIAR), EBSCO, CABI, Food Science & Technology Abstracts (FSTA), CAS Source Index (CASSI).

Turkish Journal of Agricultural Engineering Research (TURKAGER) does not charge any application, publication, or subscription fees.

Publisher: Ebubekir ALTUNTAŞ

For articles citations to the articles of the Turkish Journal of Agricultural Engineering Research (TURKAGER), please click: