Research Article
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 1, 18 - 26, 15.06.2021
https://doi.org/10.48053/turkgeo.811887

Abstract

References

  • Coolbaugh, M.F., Kratt, C., Fallacaro, A., Calvin, W.M. ,Taranik, J.V. (2007). Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of Environment, (106) 3, 350-359.
  • Coutts, A. M., Harris, R. J., Phan, T., Livesley, S. J., Williams, N. S., Tapper, N. J. (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 186, 637-651.
  • Handcock, R.N., Torgersen, C.E., Cherkauer, K.A., Gillespie, A.R., Tockner, K., Faux, R.N. Tan, J. (2012). Thermal infrared remote sensing of water temperature in riverine landscapes. Fluvial remote sensing for science and management, (85) 113.
  • Jensen, J.R. (2020, October 16). Thermal Infrared Remote Sensing Department of Geography, Lecture Notes, University of South Carolina. Retrieved from www.gers.uprm.edu/geol6225/pdfs/06_thermal_rs.pdf.
  • Kuenzer, C., Zhang, J., Li, J., Voigt, S., Mehl, H., Wagner, W. (2007). Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 28(20), 4561-4585.
  • Moore, G., Paine, R. (2014). Quantifying urban-rural temperature differences for industrial complexes using thermal satellite data. AECOM: accessed, 15, 2018.
  • Meyer, D., Dawn, S., Barbara B., Lowell, J. (2015). Advanced Spaceborne Thermal Emission and Reflection Radiometer Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Product. Algorithm Theoretical Basis Document. No. 2015-1171. US Geological Survey.
  • Ndossi, M.I., Avdan, U. (2016). Inversion of land surface temperature (LST) using Terra ASTER data: A comparison of three algorithms. Remote Sensing, 8(12), 993.
  • Rasul, A., Heiko, B., Claire, S., John, R., Bashir, A., José A. S., Manat, S., Qihao, W. (2017). A Review on remote sensing of urban heat and cool islands. Land 6, (2) 38.
  • Tiangco, M.A., Lagmay, M.F., Argete, J. (2008). ASTER‐based study of the night‐time urban heat island effect in Metro Manila. International Journal of Remote Sensing 29, no. 10: 2799-2818.
  • Xia, H., Chen, Y., Quan, J. (2018). A simple method based on the thermal anomaly index to detect industrial heat sources. International journal of applied earth observation and geoinformation, 73, 627-637.
  • Wei, C., Zhang, Y., Guo, X., Hui, S., Qin, M., Zhang, Y. (2013). Thermal Infrared Anomalies of Several Strong Earthquakes. The Scientific World Journal, https://doi.org/10.1155/2013/208407

Thermal Anomaly Detection of Industrial Zones with MNF and ICA

Year 2021, Volume: 2 Issue: 1, 18 - 26, 15.06.2021
https://doi.org/10.48053/turkgeo.811887

Abstract

Thermal anomalies can be detected with the help of the imagery provided by the satellite systems such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER provides five thermal bands for the effective analysis of thermal anomalies. In order to achieve this goal, considering the physical phenomena, many satellite signal processing methods and algorithms can be used. In this study, depending on the studied area, heat characteristics and extent are presented by using four days of data from daytime and nighttime scenes. In order to define the thermal anomalies for the studied area, Land Surface Temperature (LST) was estimated by inverse Planck function approach for all TIR bands. Minimum Noise Fraction (MNF) and Independent Component Analysis (ICA) methods were applied on all thermal infrared (TIR) bands. The results of MNF and ICA components show location of the thermal anomalies for industrial complexes especially in nighttime scenes.

References

  • Coolbaugh, M.F., Kratt, C., Fallacaro, A., Calvin, W.M. ,Taranik, J.V. (2007). Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of Environment, (106) 3, 350-359.
  • Coutts, A. M., Harris, R. J., Phan, T., Livesley, S. J., Williams, N. S., Tapper, N. J. (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 186, 637-651.
  • Handcock, R.N., Torgersen, C.E., Cherkauer, K.A., Gillespie, A.R., Tockner, K., Faux, R.N. Tan, J. (2012). Thermal infrared remote sensing of water temperature in riverine landscapes. Fluvial remote sensing for science and management, (85) 113.
  • Jensen, J.R. (2020, October 16). Thermal Infrared Remote Sensing Department of Geography, Lecture Notes, University of South Carolina. Retrieved from www.gers.uprm.edu/geol6225/pdfs/06_thermal_rs.pdf.
  • Kuenzer, C., Zhang, J., Li, J., Voigt, S., Mehl, H., Wagner, W. (2007). Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 28(20), 4561-4585.
  • Moore, G., Paine, R. (2014). Quantifying urban-rural temperature differences for industrial complexes using thermal satellite data. AECOM: accessed, 15, 2018.
  • Meyer, D., Dawn, S., Barbara B., Lowell, J. (2015). Advanced Spaceborne Thermal Emission and Reflection Radiometer Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Product. Algorithm Theoretical Basis Document. No. 2015-1171. US Geological Survey.
  • Ndossi, M.I., Avdan, U. (2016). Inversion of land surface temperature (LST) using Terra ASTER data: A comparison of three algorithms. Remote Sensing, 8(12), 993.
  • Rasul, A., Heiko, B., Claire, S., John, R., Bashir, A., José A. S., Manat, S., Qihao, W. (2017). A Review on remote sensing of urban heat and cool islands. Land 6, (2) 38.
  • Tiangco, M.A., Lagmay, M.F., Argete, J. (2008). ASTER‐based study of the night‐time urban heat island effect in Metro Manila. International Journal of Remote Sensing 29, no. 10: 2799-2818.
  • Xia, H., Chen, Y., Quan, J. (2018). A simple method based on the thermal anomaly index to detect industrial heat sources. International journal of applied earth observation and geoinformation, 73, 627-637.
  • Wei, C., Zhang, Y., Guo, X., Hui, S., Qin, M., Zhang, Y. (2013). Thermal Infrared Anomalies of Several Strong Earthquakes. The Scientific World Journal, https://doi.org/10.1155/2013/208407
There are 12 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Enis Arslan 0000-0002-2609-3925

Publication Date June 15, 2021
Submission Date October 17, 2020
Acceptance Date October 23, 2020
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Arslan, E. (2021). Thermal Anomaly Detection of Industrial Zones with MNF and ICA. Turkish Journal of Geosciences, 2(1), 18-26. https://doi.org/10.48053/turkgeo.811887