Derleme
BibTex RIS Kaynak Göster

Pulpitis Models in Experimental Animal Studies: A Traditional Review

Yıl 2024, , 329 - 343, 10.05.2024
https://doi.org/10.58711/turkishjdentres.vi.1378430

Öz

Animal experiments are the controlled use of animals in scientific studies in line with ethical principles. Using subjects in experimental in vivo research is a must; therefore, experimental animals have become an alternative to human subjects. They provide limited information due to the fact that the data obtained from in vitro experiments are far from clinical applications. A well-designed animal experiment provides the basis for future clinical trials in humans. Animal experiments have made important contributions to science in gaining knowledge about diseases, testing a new drug or surgical technique. Animal models have been used in many studies in the field of dentistry, especially in the field of endodontics. In order
to carry out these studies, first of all, an appropriate animal model and ethical principles and the results to be obtained must be adaptable. Since there is no single animal model that demonstrates all aspects of dental anomalies, morphology, disease process and healing, specific models are often used that
provide information about disease and treatment mechanisms. In dental research, monkeys, dogs, rabbits, sheep, pigs, ferrets, rats and mice are used for animal models. The aim of the study,
the hypothesis, the analysis techniques to be applied, and the animal model to which the results can be adapted for human should be selected. The welfare of the experimental animals used in the study must comply with the laws and regulations and it must be ensured that the animals are not exposed to
unnecessary pain and distress. In this review, the selection of the animal model, the operation of the study and the application of ethical rules while planning an animal model research in the field of endodontics are discussed.

Kaynakça

  • Ergün Y. Hayvan Deneylerinde Etik. Arşiv 2010;19:220-35
  • de Aguilar-Nascimento JE. Fundamental steps in experimental design for animal studies. Acta Cir Bras. 2005;20(1):2–7.
  • Tayebi L. Animal Models in Dental Research. In: Nokhbatolfoghahaei H, Paknejad Z, Bohlouli M, Rad MR, Khojasteh A, eds. Switzerland, DC: Applications of Biomedical Engineering in Dentistry.1st ed. Inc;2020:377- 443.
  • Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of animal models to study pulp inflammation. Front Dent Med. 2021;2:673552.
  • Hayvan Deneyleri Etik Kurullarının Çalışma Usul ve Esaslarına Dair Yönetmelik. TC Resmi Gazete. 15 Şubat 2014. https://www.resmigazete.gov.tr/eskiler/ 2014/02/20140215-6.htm
  • Anderson LC. Institutional and IACUC responsibilities for animal care and use education and training programs. ILAR J. 2007;48:90-95.
  • Akins, C. K., Panicker, S. E., & Cunningham, C. L. Laboratory Animals in Research and Teaching: Ethics, Care, and Methods. Washington, DC: American Psychological Association. 2005.
  • Russell WMS, Burch RL. The Principles of Humane Experimental Technique [Internet]. London: Methuen 1959.
  • Hampshire VA, Gilbert SH. Refinement, reduction, and replacement (3R) strategies in preclinical testing of medical devices. Toxicol Pathol. 2019;47:329-338.
  • Schechtman LM. Implementation of the 3Rs (refinement, reduction, and replacement): validation and regulatory acceptance considerations for alternative toxicological test methods. ILAR J. 2002;43:85-94.
  • Pereira S, Tettamanti M. Ahimsa and alternatives-the concept of the 4th R. The CPCSEA in India. ALTEX-Altern Anim Ex. 2005;22:3-6.
  • Mushtaq S, Daş YK, Aksoy A. Alternative methods to animal experiments. Turk Klin J Med Sci. 2018;38:161-70.
  • Torkay G, Öztürk AB. Mikroakışkan çiplere kök hücre ve doku mühendisliği perspektifinden bakış. J Polytech. 2023:1-.
  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Heller A, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. RTP. 2000;32:56-67.
  • Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R. Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol. 2016;29:551-61.
  • Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ. 2014;30:348.
  • Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577.
  • Nagendrababu V, Kishen A, Murray P, et al. PRIASE 2021 guidelines for reporting animal studies in Endodontology: explanation and elaboration. Int Endod J. 2021;54:858-886.
  • Gong, T., et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016, 9204574.
  • Kim, S., et al. In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediators Inflamm. 2015, 409347.
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028-1040.
  • FDA. Product Development Under the Animal Rule - Guidance for Industry. Silver Spring, MD: Food Drug Adm 2015 ;1–54.
  • Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc. 2019;91:e20170238.
  • Mjör IA, Tronstad L. Experimentally induced pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol. 1972;34:102-108.
  • Furseth R, Mjör I, Skogedal O. The fine structure of induced pulpitis in a monkey (Cercopithecus aethiops). Arch Oral Biol. 1979;24:883-888.
  • Fuks AB, Jones P, Michaeli Y, Bimstein E. Pulp response to collagen and glutaraldehyde in pulpotomized primary teeth of baboons. Pediatr Dent. 1991;13:142-150.
  • Songsiripradubboon S, Kladkaew S, Trairatvorakul C, et al. Stimulation of dentin regeneration by using acemannan in teeth with lipopolysaccharide-induced pulp inflammation. J Endod. 2017;43:1097-1103.
  • Shahravan A, Ghoddusi J, Eslami B, Rategar A. A histopathological study of the pulp of dogs’ teeth after nduction of experimental pulp inflammation for different periods of time. J Microsc. 2010;237:119-121.
  • Eba H, Murasawa Y, Iohara K, Isogai Z, Nakamura H, Nakamura H, et al. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. Gullberg D, editor. PLoS ONE. 2012;7:e52523.
  • Torabinejad M, Bakland LK. An animal model for the study of immunopathogenesis of periapical lesions. J Endod. 1978;4:273-277.
  • Masson E, Hennet PR, Calas PL. Apical root canal anatomy in the dog. Dent Traumatol. 1992;8:109-112.
  • Holland G. Periapical innervation of the ferret canine one year after pulpectomy. J Dent Res. 1992;71:470-474.
  • Holland G. Periapical response to apical plugs of dentin and calcium hydroxide in ferret canines. J Endod. 1984;10:71- 74.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731-2738.
  • Hao L, Chen W, McConnell M, et al. A small molecule, odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect Immun. 2015;83:1235-1245.
  • Tagger M, Massler M. Periapical tissue reactions after pulp exposure in rat molars. Oral Surg Oral Med Oral Pathol Oral Radiol. 1975;39:304-317.
  • Liu L, Peng B. The expression of macrophage migration inhibitory factor is correlated with receptor activator of nuclear factor kappa B ligand in induced rat periapical lesions. J Endod. 2013;39:984-989.
  • Yoneda N, Noiri Y, Matsui S, et al. Development of a root canal treatment model in the rat. Sci Rep. 2017;7:1-9.
  • Thibodeau B, Teixeira F, Yamauchi M, Caplan DJ, Trope M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod. 2007;33:680-689.
  • da Silva LAB, Nelson-Filho P, da Silva RAB, et al. Revascularization and periapical repair after endodontic treatment using apical negative pressure irrigation versus conventional irrigation plus triantibiotic intracanal dressing in dogs’ teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:779-787.
  • Zuong X-Y, Yang Y-P, Chen W-X, Zhang Y-J, Wen C-M. Pulp revascularization of immature anterior teeth with apical periodontitis. West China J Stomatol. 2010;28:672- 674.
  • Yamauchi N, Nagaoka H, Yamauchi S, Teixeira FB, Miguez P, Yamauchi M. Immunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth. J Endod. 2011;37:1636-1641.
  • Yamauchi N, Yamauchi S, Nagaoka H, et al. Tissue engineering strategies for immature teeth with apical periodontitis. J Endod. 2011;37:390-397.
  • Tawfik H, Abu‐Seida A, Hashem A, Nagy M. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps. Int Endod. J. 2013;46:910-922.
  • Londero CdLD, Pagliarin CML, Felippe MCS, Felippe WT, Danesi CC, Barletta FB. Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment. J Endod. 2015;41:1619-1625.
  • Torabinejad M, Milan M, Shabahang S, Wright KR, Faras H. Histologic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: an animal investigation. J Endod. 2015;41:846-852.
  • Zhu X, Liu J, Yu Z, et al. A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentinlike tissue. Tissue Eng. Part C Methods. 2018;24:108-120.
  • Saoud TMA, Zaazou A, Nabil A, et al. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol. 2015;31:243-249.
  • Zhu W, Zhu X, Huang GJ, Cheung G, Dissanayaka W, Zhang C. Regeneration of dental pulp tissue in immature teeth with apical periodontitis using platelet‐rich plasma and dental pulp cells. Int Endod J. 2013;46:962-970.
  • Altaii M, Cathro P, Broberg M, Richards L. Endodontic regeneration and tooth revitalization in immature infected sheep teeth. Int Endod J. 2017;50:480-491.
  • Zhang D-D, Chen X, Bao Z-F, Chen M, Ding Z-J, Zhong M. Histologic comparison between platelet-rich plasma and blood clot in regenerative endodontic treatment: an animal study. J Endod. 2014;40:1388-1393.
  • Yoo Y-J, Lee W, Cho Y-A, Park J-C, Shon W-J, Baek S-H. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis. J Endod. 2014;40:1355-1361.
  • Khademi AA, Dianat O, Mahjour F, Razavi SM, Younessian F. Outcomes of revascularization treatment in immature dog’s teeth. Dent Traumatol. 2014;30:374-379.
  • Hale FA. Dental caries in the dog. The CVJ. 2009;50:1301.
  • Shi X, Li Z, He Y, Jiang Q, Yang X. Effect of different dental burs for experimental induction of pulpitis in mice. Arch Oral Biol. 2017;83:252-257.
  • He Y, Gan Y, Lu J, et al. Pulpal tissue inflammatory reactions after experimental pulpal exposure in mice. J Endod. 2017;43:90-95.
  • Chung M-K, Lee J, Duraes G, Ro J. Lipopolysaccharideinduced pulpitis up-regulates TRPV1 in trigeminal ganglia. J Dent Res. 2011;90:1103-1107.
  • Cleaton-Jones P, Duggal M, Parak R, Williams S, Setzer S. Pulpitis induction in baboon primary teeth using carious dentine or Streptococcus mutans. S Afr Dent J. 2004;59:119-122.
  • Hall B, Zhang L, Sun Z, et al. Conditional TNF-α overexpression in the tooth and alveolar bone results in painful pulpitis and osteitis. J Dent Res. 2016;95:188-195.
  • Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.H. (1980): Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Nat. Acad. Sci., USA 77.7380-7384.
  • Houdebine LM. Use of transgenic animals to improve human health and animal production. Reprod Domest Anim. 2005;40:269-281.
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267- 284.
  • Parson SH. Histology at a Glance. J Anat. 2011;219:777.
  • Qi S, Qian J, Chen F, et al. Expression of autophagy‑associated proteins in rat dental irreversible pulpitis. Mol Med Rep. 2019;19:2749-2757.
  • Divaris K. Predicting dental caries outcomes in children: a “risky” concept. J Dent Res. 2016;95:248-254

Deneysel Hayvan Çalışmalarında Pulpitis Modelleri: Geleneksel Derleme

Yıl 2024, , 329 - 343, 10.05.2024
https://doi.org/10.58711/turkishjdentres.vi.1378430

Öz

Hayvan deneyleri, hayvanların bilimsel çalışmalarda etik ilkeler doğrultusunda kontrollü olarak kullanılmasıdır. Deneysel in vivo araştırmalarda denek kullanmak bir zorunluluktur; bu yüzden deney hayvanları insan deneklere bir alternatif olmuştur. In vitro deneyler ile elde edilen verilerin klinik uygulamalardan uzak olması sebebiyle sınırlı bilgi sağlarlar. İyi tasarlanmış bir hayvan deneyi, insanlarda gelecekteki klinik deneyler için temel bilgiler sağlar. Hayvan deneyleri, hastalıklar hakkında bilgi edinilmesinde, yeni bir ilaç veya cerrahi tekniğin test edilmesinde bilime önemli katkılar sağlamıştır. Diş hekimliği alanında, özelikle de endodonti alanında da birçok çalışmada hayvan modelleri kullanılmıştır. Bu çalışmaların yapılabilmesi için öncellikli olarak uygun bir hayvan modeli ve etik ilkeler ile
elde edilecek sonuçların uyarlanabilir olması gerekir. Dental anomalilerin, morfolojinin, hastalık süreci ve iyileşmesinin tüm yönlerini gösteren tek bir hayvan modeli olmadığı için, genellikle hastalık ve tedavi mekanizmaları hakkında bilgi sağlayan spesifik modeller kullanılmaktadır. Diş hekimliği araştırmalarında, maymun, köpek, tavşan, koyun, domuz, gelincik, sıçan ve fareler hayvan modelleri için kullanılmaktadır.
Çalışmanın amacı, hipotezi, uygulanacak analiz teknikleri ve elde edilecek sonuçların insan için uyarlanabileceği hayvan modeli seçilmelidir. Çalışmada kullanılan deney hayvanlarının refahı, yasa ve yönetmeliklerine uygun olmalıdır ve hayvanların gereksiz acı ve sıkıntıya maruz kalmaması sağlanmalıdır. Bu derlemede, endodonti alanında hayvan modeli araştırması planlanırken hayvan modelinin seçimi, çalışmanın işleyişi ve etik kuralların uygulanması ele alınmıştır

Kaynakça

  • Ergün Y. Hayvan Deneylerinde Etik. Arşiv 2010;19:220-35
  • de Aguilar-Nascimento JE. Fundamental steps in experimental design for animal studies. Acta Cir Bras. 2005;20(1):2–7.
  • Tayebi L. Animal Models in Dental Research. In: Nokhbatolfoghahaei H, Paknejad Z, Bohlouli M, Rad MR, Khojasteh A, eds. Switzerland, DC: Applications of Biomedical Engineering in Dentistry.1st ed. Inc;2020:377- 443.
  • Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of animal models to study pulp inflammation. Front Dent Med. 2021;2:673552.
  • Hayvan Deneyleri Etik Kurullarının Çalışma Usul ve Esaslarına Dair Yönetmelik. TC Resmi Gazete. 15 Şubat 2014. https://www.resmigazete.gov.tr/eskiler/ 2014/02/20140215-6.htm
  • Anderson LC. Institutional and IACUC responsibilities for animal care and use education and training programs. ILAR J. 2007;48:90-95.
  • Akins, C. K., Panicker, S. E., & Cunningham, C. L. Laboratory Animals in Research and Teaching: Ethics, Care, and Methods. Washington, DC: American Psychological Association. 2005.
  • Russell WMS, Burch RL. The Principles of Humane Experimental Technique [Internet]. London: Methuen 1959.
  • Hampshire VA, Gilbert SH. Refinement, reduction, and replacement (3R) strategies in preclinical testing of medical devices. Toxicol Pathol. 2019;47:329-338.
  • Schechtman LM. Implementation of the 3Rs (refinement, reduction, and replacement): validation and regulatory acceptance considerations for alternative toxicological test methods. ILAR J. 2002;43:85-94.
  • Pereira S, Tettamanti M. Ahimsa and alternatives-the concept of the 4th R. The CPCSEA in India. ALTEX-Altern Anim Ex. 2005;22:3-6.
  • Mushtaq S, Daş YK, Aksoy A. Alternative methods to animal experiments. Turk Klin J Med Sci. 2018;38:161-70.
  • Torkay G, Öztürk AB. Mikroakışkan çiplere kök hücre ve doku mühendisliği perspektifinden bakış. J Polytech. 2023:1-.
  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Heller A, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. RTP. 2000;32:56-67.
  • Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R. Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol. 2016;29:551-61.
  • Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ. 2014;30:348.
  • Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577.
  • Nagendrababu V, Kishen A, Murray P, et al. PRIASE 2021 guidelines for reporting animal studies in Endodontology: explanation and elaboration. Int Endod J. 2021;54:858-886.
  • Gong, T., et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016, 9204574.
  • Kim, S., et al. In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediators Inflamm. 2015, 409347.
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028-1040.
  • FDA. Product Development Under the Animal Rule - Guidance for Industry. Silver Spring, MD: Food Drug Adm 2015 ;1–54.
  • Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc. 2019;91:e20170238.
  • Mjör IA, Tronstad L. Experimentally induced pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol. 1972;34:102-108.
  • Furseth R, Mjör I, Skogedal O. The fine structure of induced pulpitis in a monkey (Cercopithecus aethiops). Arch Oral Biol. 1979;24:883-888.
  • Fuks AB, Jones P, Michaeli Y, Bimstein E. Pulp response to collagen and glutaraldehyde in pulpotomized primary teeth of baboons. Pediatr Dent. 1991;13:142-150.
  • Songsiripradubboon S, Kladkaew S, Trairatvorakul C, et al. Stimulation of dentin regeneration by using acemannan in teeth with lipopolysaccharide-induced pulp inflammation. J Endod. 2017;43:1097-1103.
  • Shahravan A, Ghoddusi J, Eslami B, Rategar A. A histopathological study of the pulp of dogs’ teeth after nduction of experimental pulp inflammation for different periods of time. J Microsc. 2010;237:119-121.
  • Eba H, Murasawa Y, Iohara K, Isogai Z, Nakamura H, Nakamura H, et al. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. Gullberg D, editor. PLoS ONE. 2012;7:e52523.
  • Torabinejad M, Bakland LK. An animal model for the study of immunopathogenesis of periapical lesions. J Endod. 1978;4:273-277.
  • Masson E, Hennet PR, Calas PL. Apical root canal anatomy in the dog. Dent Traumatol. 1992;8:109-112.
  • Holland G. Periapical innervation of the ferret canine one year after pulpectomy. J Dent Res. 1992;71:470-474.
  • Holland G. Periapical response to apical plugs of dentin and calcium hydroxide in ferret canines. J Endod. 1984;10:71- 74.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731-2738.
  • Hao L, Chen W, McConnell M, et al. A small molecule, odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect Immun. 2015;83:1235-1245.
  • Tagger M, Massler M. Periapical tissue reactions after pulp exposure in rat molars. Oral Surg Oral Med Oral Pathol Oral Radiol. 1975;39:304-317.
  • Liu L, Peng B. The expression of macrophage migration inhibitory factor is correlated with receptor activator of nuclear factor kappa B ligand in induced rat periapical lesions. J Endod. 2013;39:984-989.
  • Yoneda N, Noiri Y, Matsui S, et al. Development of a root canal treatment model in the rat. Sci Rep. 2017;7:1-9.
  • Thibodeau B, Teixeira F, Yamauchi M, Caplan DJ, Trope M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod. 2007;33:680-689.
  • da Silva LAB, Nelson-Filho P, da Silva RAB, et al. Revascularization and periapical repair after endodontic treatment using apical negative pressure irrigation versus conventional irrigation plus triantibiotic intracanal dressing in dogs’ teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:779-787.
  • Zuong X-Y, Yang Y-P, Chen W-X, Zhang Y-J, Wen C-M. Pulp revascularization of immature anterior teeth with apical periodontitis. West China J Stomatol. 2010;28:672- 674.
  • Yamauchi N, Nagaoka H, Yamauchi S, Teixeira FB, Miguez P, Yamauchi M. Immunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth. J Endod. 2011;37:1636-1641.
  • Yamauchi N, Yamauchi S, Nagaoka H, et al. Tissue engineering strategies for immature teeth with apical periodontitis. J Endod. 2011;37:390-397.
  • Tawfik H, Abu‐Seida A, Hashem A, Nagy M. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps. Int Endod. J. 2013;46:910-922.
  • Londero CdLD, Pagliarin CML, Felippe MCS, Felippe WT, Danesi CC, Barletta FB. Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment. J Endod. 2015;41:1619-1625.
  • Torabinejad M, Milan M, Shabahang S, Wright KR, Faras H. Histologic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: an animal investigation. J Endod. 2015;41:846-852.
  • Zhu X, Liu J, Yu Z, et al. A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentinlike tissue. Tissue Eng. Part C Methods. 2018;24:108-120.
  • Saoud TMA, Zaazou A, Nabil A, et al. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol. 2015;31:243-249.
  • Zhu W, Zhu X, Huang GJ, Cheung G, Dissanayaka W, Zhang C. Regeneration of dental pulp tissue in immature teeth with apical periodontitis using platelet‐rich plasma and dental pulp cells. Int Endod J. 2013;46:962-970.
  • Altaii M, Cathro P, Broberg M, Richards L. Endodontic regeneration and tooth revitalization in immature infected sheep teeth. Int Endod J. 2017;50:480-491.
  • Zhang D-D, Chen X, Bao Z-F, Chen M, Ding Z-J, Zhong M. Histologic comparison between platelet-rich plasma and blood clot in regenerative endodontic treatment: an animal study. J Endod. 2014;40:1388-1393.
  • Yoo Y-J, Lee W, Cho Y-A, Park J-C, Shon W-J, Baek S-H. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis. J Endod. 2014;40:1355-1361.
  • Khademi AA, Dianat O, Mahjour F, Razavi SM, Younessian F. Outcomes of revascularization treatment in immature dog’s teeth. Dent Traumatol. 2014;30:374-379.
  • Hale FA. Dental caries in the dog. The CVJ. 2009;50:1301.
  • Shi X, Li Z, He Y, Jiang Q, Yang X. Effect of different dental burs for experimental induction of pulpitis in mice. Arch Oral Biol. 2017;83:252-257.
  • He Y, Gan Y, Lu J, et al. Pulpal tissue inflammatory reactions after experimental pulpal exposure in mice. J Endod. 2017;43:90-95.
  • Chung M-K, Lee J, Duraes G, Ro J. Lipopolysaccharideinduced pulpitis up-regulates TRPV1 in trigeminal ganglia. J Dent Res. 2011;90:1103-1107.
  • Cleaton-Jones P, Duggal M, Parak R, Williams S, Setzer S. Pulpitis induction in baboon primary teeth using carious dentine or Streptococcus mutans. S Afr Dent J. 2004;59:119-122.
  • Hall B, Zhang L, Sun Z, et al. Conditional TNF-α overexpression in the tooth and alveolar bone results in painful pulpitis and osteitis. J Dent Res. 2016;95:188-195.
  • Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.H. (1980): Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Nat. Acad. Sci., USA 77.7380-7384.
  • Houdebine LM. Use of transgenic animals to improve human health and animal production. Reprod Domest Anim. 2005;40:269-281.
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267- 284.
  • Parson SH. Histology at a Glance. J Anat. 2011;219:777.
  • Qi S, Qian J, Chen F, et al. Expression of autophagy‑associated proteins in rat dental irreversible pulpitis. Mol Med Rep. 2019;19:2749-2757.
  • Divaris K. Predicting dental caries outcomes in children: a “risky” concept. J Dent Res. 2016;95:248-254
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endodonti
Bölüm Derlemeler
Yazarlar

Burcu Pirimoglu 0000-0003-4104-546X

Cangül Keskin 0000-0001-8990-4847

Abdurrahman Aksoy 0000-0001-9486-312X

Yayımlanma Tarihi 10 Mayıs 2024
Gönderilme Tarihi 22 Ekim 2023
Kabul Tarihi 2 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Pirimoglu B, Keskin C, Aksoy A. Deneysel Hayvan Çalışmalarında Pulpitis Modelleri: Geleneksel Derleme. J Turkish Dent Res. 2024;3(1):329-43.

Türk Diş Hekimliği Araştırma Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Dergimize Diş Hekimliği alanından yayın kabulü yapılmaktadır. Diğer alanlardan gönderilen yayınlar değerlendirmeye alınmamaktadır.