Research Article
BibTex RIS Cite

The effects of mechanical activation on corrosion resistance of cordierite ceramics

Year 2023, , 83 - 88, 29.12.2023
https://doi.org/10.51435/turkjac.1333631

Abstract

The corrosion degrees of produced non-activated and activated cordierite-based ceramics were investigated in hydrochloric and sulfuric acid solutions. The composition of talc, alumina, and kaolinite powders was mechanically activated in a planetary mill. The concentrations of aluminum, magnesium, silicon, calcium, and potassium leached to the acid solutions from non-activated and activated cordierites were measured using ICP-OES. The amorphization of the structures was examined by XRD analysis. As a result, it has been determined that activated cordierite-based ceramics are more durable, and sulfuric acid solution causes more corrosion than hydrochloric acid.

Supporting Institution

Sakarya Üniversitesi

Project Number

-

Thanks

-

References

  • C. N. Obradovic, N. Dordevic, S. Filipovic, N. Nikolic, D. Kosanovic, M. Mitric, S. Markovic, V. Pavlovic, Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive, Powder Technol, 218, 2012, 157–161. https://doi.org/10.1016/j.powtec.2011.12.012.
  • J. Liao, G. Qing, B. Zhao, Phase equilibria studies in the CaO-MgO-Al2O3-SiO2 system with Al2O3/SiO2 weight ratio of 0.4, Metals, 13(224), 2023, 2-26. https://doi.org/10.3390/met13020224.
  • W. N. Obradović, V. Pavlović, M. Kachlik, K. Maca, D. Olćan, A. Đorđević, A. Thantshapanyan, B. Vlahović, V. Pavlović, Processing and properties of dense cordierite ceramics obtained through solid-state reaction and pressure-less sintering, Adv Appl Ceram, 118(5), 2019, 241–248. https://doi.org/10.1080/17436753.2018.1548150.
  • S. Yürüyen, N. Toplan, K. Yıldız, H. Ö. Toplan, The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system, J Therm Anal Calorim, 125(2), 2016, 803–808. https://doi.org/10.1007/s10973-016-5277-1.
  • C. Başaran, N. Canikoğlu, H. Ö. Toplan, N. Toplan, The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste, J Therm Anal Calorim, 125(2), 2016, 695–701. https://doi.org/10.1007/s10973-015-5139-2.
  • A. Peles, N. Đorđevic, N. Obradovic, N. Tadic, V. B. Pavlovic, Influence of prolonged sintering time on density and electrical properties of isothermally sintered cordierite-based ceramics, Sci Sinter, 45(2), 2013, 157-164. https://doi.org/10.2298/SOS1302157P.
  • Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceram Int, 26(7), 2000, 739–43. https://doi.org/10.1016/S0272-8842(00)00013-4.
  • P. Y. Azimov, S. A. Bushmin, Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800 °C and 1–5 kbar, Geochem. Int+, 45(1), 2007, 1210–1234. https://doi.org/10.1134/S0016702907120038.
  • A. Harrati, Y. Arkame, A. Manni, A. El Haddar, B. Achiou, A. El Bouari, I. E. A. El Hassani, A. Sdiri, C. Sadik, Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties, J Indian Chem Soc, 99(6), 2022, 100496. https://doi.org/10.1016/j.jics.2022.100496.
  • J. Kang, J. Wang, X. Zhou, J. Yuan, Y. Hou, S. Qian, S. Li, Y. Yue, Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass-ceramics, J Non-Cryst Solids, 481, 2017, 184-190. https://doi.org/10.1016/j.jnoncrysol.2017.10.048.
  • S. Baitalik, N. Kaya, Processing and properties of cordierite-silica bonded porous SiC ceramics, Ceram Int, 43(17), 2018, 14683–14692. https://doi.org/10.1016/j.ceramint.2017.07.196.
  • S. Koç¸ N. Toplan, K. Yıldız, H. O. Toplan, Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite, J Therm Anal Calorim, 103, 2011, 791–796. https://doi.org/10.1007/s10973-010-1154-5.
  • J. Ding, J. Wang, H. Yang, Z. Liu, C. Yu, X. Li, C. Deng, H. Zhu, Improvement of mechanical properties of composites with surface modified B4C for precision machining, Materials, 16(882), 2023, 2-10. https://doi.org/10.3390/ma16020882.
  • N. Obradović, S. Filipović, N. Đorđević, D. Kosanović, S. Marković, V. Pavlović, D. Olćan, A. Djordjević, M. Kachlik, K.l Maca, Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics, Ceram Int, 42, 2016, 13909–13918. https://doi.org/10.1016/j.ceramint.2016.05.201.
  • S. K. Nath, S. Kumar, R. Kumar, Effect of mechanical activation on cordierite synthesis through solid-state sintering method, B Mater Sci, 37(6), 2014, 1221–1226. https://doi.org/10.1007/s12034-014-0065-7.
  • N. G. Đorđević, P. B. Jovanić, Influence of mechanical activation on electrical properties of cordierite ceramics, Sci Sinter, 40, 2008, 47-53. https://doi.org/10.2298/SOS0801047D.
  • E. Yalamac¸ S. Akkurt, Additive and intensive grinding effects on the synthesis of cordierite, Ceram Int, 32, 2006, 825–832. https://doi.org/10.1016/j.ceramint.2005.06.006.
  • J. Wu, C. Hu, C. Ping, X. Xu, W. Xiang, Preparation and corrosion resistance of cordierite–spodumene composite ceramics using zircon as a modifying agent, Ceram Int, 44, 2018, 19590–19596. https://doi.org/10.1016/j.ceramint.2018.07.205.
  • B. Çıtak, D. Kırsever, A. Ayday, H. Boussebha, A. Ş. Demirkıran, The corrosion kinetics of cordierite-based ZrO2 composites obtained from natural zeolite in dilute HCl acid solution, J Compos Mater, 55(20), 2021, 2751–2763. https://doi.org/10.1177/0021998321996751.
  • P. Balaz, Mechanochemistry In Nanoscience And Minerals Engineering (1. edition), 2008, Germany, Springer.
  • S. Vyazovkin, Isoconversional Kinetics, Handbook Of Thermal Analysis And Calorimetry, Editors: M.E. Brown, P.K. Gallagher, 2008, Holland, Elsevier.
  • J. Wu, C. Lu, X. Xu, D. Wang, Y. Zhang, Y. Zhou, Preparation and characterization of cordierite ceramic from coal series kaolin for electronic application, J Aust Ceram Soc, 55, 2019, 943–952. https://doi.org/10.1007/s41779-019-00306-w.
  • D. Tromans, J. A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner Eng, 12(6), 1999, 609–625. https://doi.org/10.1016/S0892-6875(99)00047-3.
  • D. Tromans, J. A. Meech, Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation, Miner Eng, 14(11), 2001, 1359–1377. https://doi.org/10.1016/S0892-6875(01)00151-0.
  • E. Elmas, K. Yıldız, N. Toplan, H. Ö. Toplan, Effect of mechanical activation on mullite formation in an alumına-quartz ceramics system, Mater Technol, 47(4), 2013, 413-416. https://doi.org/10.1007/s10973-011-1757-5.
  • L. Curkovic, M. F. Jelaca, Dissolution of alumina ceramics in HCl aqueous solution, Ceram Int, 35(5), 2009, 2041–2045. https://doi.org/10.1016/j.ceramint.2008.11.007.
Year 2023, , 83 - 88, 29.12.2023
https://doi.org/10.51435/turkjac.1333631

Abstract

Project Number

-

References

  • C. N. Obradovic, N. Dordevic, S. Filipovic, N. Nikolic, D. Kosanovic, M. Mitric, S. Markovic, V. Pavlovic, Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive, Powder Technol, 218, 2012, 157–161. https://doi.org/10.1016/j.powtec.2011.12.012.
  • J. Liao, G. Qing, B. Zhao, Phase equilibria studies in the CaO-MgO-Al2O3-SiO2 system with Al2O3/SiO2 weight ratio of 0.4, Metals, 13(224), 2023, 2-26. https://doi.org/10.3390/met13020224.
  • W. N. Obradović, V. Pavlović, M. Kachlik, K. Maca, D. Olćan, A. Đorđević, A. Thantshapanyan, B. Vlahović, V. Pavlović, Processing and properties of dense cordierite ceramics obtained through solid-state reaction and pressure-less sintering, Adv Appl Ceram, 118(5), 2019, 241–248. https://doi.org/10.1080/17436753.2018.1548150.
  • S. Yürüyen, N. Toplan, K. Yıldız, H. Ö. Toplan, The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system, J Therm Anal Calorim, 125(2), 2016, 803–808. https://doi.org/10.1007/s10973-016-5277-1.
  • C. Başaran, N. Canikoğlu, H. Ö. Toplan, N. Toplan, The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste, J Therm Anal Calorim, 125(2), 2016, 695–701. https://doi.org/10.1007/s10973-015-5139-2.
  • A. Peles, N. Đorđevic, N. Obradovic, N. Tadic, V. B. Pavlovic, Influence of prolonged sintering time on density and electrical properties of isothermally sintered cordierite-based ceramics, Sci Sinter, 45(2), 2013, 157-164. https://doi.org/10.2298/SOS1302157P.
  • Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceram Int, 26(7), 2000, 739–43. https://doi.org/10.1016/S0272-8842(00)00013-4.
  • P. Y. Azimov, S. A. Bushmin, Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800 °C and 1–5 kbar, Geochem. Int+, 45(1), 2007, 1210–1234. https://doi.org/10.1134/S0016702907120038.
  • A. Harrati, Y. Arkame, A. Manni, A. El Haddar, B. Achiou, A. El Bouari, I. E. A. El Hassani, A. Sdiri, C. Sadik, Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties, J Indian Chem Soc, 99(6), 2022, 100496. https://doi.org/10.1016/j.jics.2022.100496.
  • J. Kang, J. Wang, X. Zhou, J. Yuan, Y. Hou, S. Qian, S. Li, Y. Yue, Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass-ceramics, J Non-Cryst Solids, 481, 2017, 184-190. https://doi.org/10.1016/j.jnoncrysol.2017.10.048.
  • S. Baitalik, N. Kaya, Processing and properties of cordierite-silica bonded porous SiC ceramics, Ceram Int, 43(17), 2018, 14683–14692. https://doi.org/10.1016/j.ceramint.2017.07.196.
  • S. Koç¸ N. Toplan, K. Yıldız, H. O. Toplan, Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite, J Therm Anal Calorim, 103, 2011, 791–796. https://doi.org/10.1007/s10973-010-1154-5.
  • J. Ding, J. Wang, H. Yang, Z. Liu, C. Yu, X. Li, C. Deng, H. Zhu, Improvement of mechanical properties of composites with surface modified B4C for precision machining, Materials, 16(882), 2023, 2-10. https://doi.org/10.3390/ma16020882.
  • N. Obradović, S. Filipović, N. Đorđević, D. Kosanović, S. Marković, V. Pavlović, D. Olćan, A. Djordjević, M. Kachlik, K.l Maca, Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics, Ceram Int, 42, 2016, 13909–13918. https://doi.org/10.1016/j.ceramint.2016.05.201.
  • S. K. Nath, S. Kumar, R. Kumar, Effect of mechanical activation on cordierite synthesis through solid-state sintering method, B Mater Sci, 37(6), 2014, 1221–1226. https://doi.org/10.1007/s12034-014-0065-7.
  • N. G. Đorđević, P. B. Jovanić, Influence of mechanical activation on electrical properties of cordierite ceramics, Sci Sinter, 40, 2008, 47-53. https://doi.org/10.2298/SOS0801047D.
  • E. Yalamac¸ S. Akkurt, Additive and intensive grinding effects on the synthesis of cordierite, Ceram Int, 32, 2006, 825–832. https://doi.org/10.1016/j.ceramint.2005.06.006.
  • J. Wu, C. Hu, C. Ping, X. Xu, W. Xiang, Preparation and corrosion resistance of cordierite–spodumene composite ceramics using zircon as a modifying agent, Ceram Int, 44, 2018, 19590–19596. https://doi.org/10.1016/j.ceramint.2018.07.205.
  • B. Çıtak, D. Kırsever, A. Ayday, H. Boussebha, A. Ş. Demirkıran, The corrosion kinetics of cordierite-based ZrO2 composites obtained from natural zeolite in dilute HCl acid solution, J Compos Mater, 55(20), 2021, 2751–2763. https://doi.org/10.1177/0021998321996751.
  • P. Balaz, Mechanochemistry In Nanoscience And Minerals Engineering (1. edition), 2008, Germany, Springer.
  • S. Vyazovkin, Isoconversional Kinetics, Handbook Of Thermal Analysis And Calorimetry, Editors: M.E. Brown, P.K. Gallagher, 2008, Holland, Elsevier.
  • J. Wu, C. Lu, X. Xu, D. Wang, Y. Zhang, Y. Zhou, Preparation and characterization of cordierite ceramic from coal series kaolin for electronic application, J Aust Ceram Soc, 55, 2019, 943–952. https://doi.org/10.1007/s41779-019-00306-w.
  • D. Tromans, J. A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner Eng, 12(6), 1999, 609–625. https://doi.org/10.1016/S0892-6875(99)00047-3.
  • D. Tromans, J. A. Meech, Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation, Miner Eng, 14(11), 2001, 1359–1377. https://doi.org/10.1016/S0892-6875(01)00151-0.
  • E. Elmas, K. Yıldız, N. Toplan, H. Ö. Toplan, Effect of mechanical activation on mullite formation in an alumına-quartz ceramics system, Mater Technol, 47(4), 2013, 413-416. https://doi.org/10.1007/s10973-011-1757-5.
  • L. Curkovic, M. F. Jelaca, Dissolution of alumina ceramics in HCl aqueous solution, Ceram Int, 35(5), 2009, 2041–2045. https://doi.org/10.1016/j.ceramint.2008.11.007.
There are 26 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Research Articles
Authors

Can Serkan Keskin 0000-0002-6045-3533

Ceren Ayna Çakır 0009-0000-1224-7228

Hüseyin Altundağ 0000-0002-3675-4133

Nil Toplan 0000-0003-4130-0002

Hüseyin Özkan Toplan 0000-0002-3928-2733

Project Number -
Publication Date December 29, 2023
Submission Date July 27, 2023
Acceptance Date November 6, 2023
Published in Issue Year 2023

Cite

APA Keskin, C. S., Ayna Çakır, C., Altundağ, H., Toplan, N., et al. (2023). The effects of mechanical activation on corrosion resistance of cordierite ceramics. Turkish Journal of Analytical Chemistry, 5(2), 83-88. https://doi.org/10.51435/turkjac.1333631
AMA Keskin CS, Ayna Çakır C, Altundağ H, Toplan N, Toplan HÖ. The effects of mechanical activation on corrosion resistance of cordierite ceramics. TurkJAC. December 2023;5(2):83-88. doi:10.51435/turkjac.1333631
Chicago Keskin, Can Serkan, Ceren Ayna Çakır, Hüseyin Altundağ, Nil Toplan, and Hüseyin Özkan Toplan. “The Effects of Mechanical Activation on Corrosion Resistance of Cordierite Ceramics”. Turkish Journal of Analytical Chemistry 5, no. 2 (December 2023): 83-88. https://doi.org/10.51435/turkjac.1333631.
EndNote Keskin CS, Ayna Çakır C, Altundağ H, Toplan N, Toplan HÖ (December 1, 2023) The effects of mechanical activation on corrosion resistance of cordierite ceramics. Turkish Journal of Analytical Chemistry 5 2 83–88.
IEEE C. S. Keskin, C. Ayna Çakır, H. Altundağ, N. Toplan, and H. Ö. Toplan, “The effects of mechanical activation on corrosion resistance of cordierite ceramics”, TurkJAC, vol. 5, no. 2, pp. 83–88, 2023, doi: 10.51435/turkjac.1333631.
ISNAD Keskin, Can Serkan et al. “The Effects of Mechanical Activation on Corrosion Resistance of Cordierite Ceramics”. Turkish Journal of Analytical Chemistry 5/2 (December 2023), 83-88. https://doi.org/10.51435/turkjac.1333631.
JAMA Keskin CS, Ayna Çakır C, Altundağ H, Toplan N, Toplan HÖ. The effects of mechanical activation on corrosion resistance of cordierite ceramics. TurkJAC. 2023;5:83–88.
MLA Keskin, Can Serkan et al. “The Effects of Mechanical Activation on Corrosion Resistance of Cordierite Ceramics”. Turkish Journal of Analytical Chemistry, vol. 5, no. 2, 2023, pp. 83-88, doi:10.51435/turkjac.1333631.
Vancouver Keskin CS, Ayna Çakır C, Altundağ H, Toplan N, Toplan HÖ. The effects of mechanical activation on corrosion resistance of cordierite ceramics. TurkJAC. 2023;5(2):83-8.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/