Review
BibTex RIS Cite
Year 2024, , 40 - 49, 30.06.2024
https://doi.org/10.51435/turkjac.1407921

Abstract

References

  • O.I. Lipskiksh, E.I. Korotkova, P. Khristunova Ye, J. Barek, B. Kratochvil, Sensors for voltametric determination of food azo dyes - A critical review, Electro Chim Acta, 260, 2018, 974-985.
  • N. Martins, C.L. Roriz, P. Morales, L. Barros, I.C.F.R. Ferreira, Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices, Trends Food Sci, 52, 2016, 1-15.
  • P. Amchova, H. Kotolova, J. Ruda-Kucerova, Health safety issues of synthetic food colorants, Regul Toxicol Pharmacol, 73, 2015, 914-922.
  • S. Adeel, S Rafi, M.A. Mustaan, M. Salman, A. Ghaffar, Handbook of Renewable Materials for Coloration and Finishing (1. edition), 2018, USA, Wiley.
  • K. Rovina, S. Siddiquee, S.M. Shaarani, Extraction, analytical and advanced methods for detection of Allura Red AC (E129) in food and beverages products, Front Microbiol, 7, 2016, 798.
  • A.H. Alghamdi, Determination of Allura Red in some food samples by adsorptive stripping voltammetry, J AOAC Int, 88, 2005, 1387-1393.
  • C.V. Vorhees, R.E. Butcher, R.L. Brunner, V. Wootten, T.J. Sobotka, Developmental toxicity and psychotoxicity of FD and C red dye no. 40 (Allura Red AC) in rats, Toxicology, 28, 1983, 207-217.
  • E. Dinç, E. Baydan, M. Kanbur, F. Onur, Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 58, 2005, 579-594.
  • M.G. Kiseleva, V.V. Pimenova, K.I. Eller, Optimization of conditions for the HPLC determination of synthetic dyes in food, J Anal Chem, 58, 2003, 685-690.
  • N. Yoshioka, K. Ichihashi, Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection, Talanta, 74, 2008, 1408-1413.
  • K.L. Kuo, H.Y. Huang, Y.Z. Hsieh, High-performance capillary electrophoretic analysis of synthetic food colorants, Chromatographia, 47, 1998, 249-256.
  • K. Pliuta, A. Chebotarev, A. Pliuta, D. Snigur, Voltammetric determination of Allura Red AC onto carbone-paste electrode modified by silica with embedded cetylpyridinium chloride, Electroanalysis, 33. 2021, 987-992.
  • D. Harvey, Modern Analytical Chemistry (1. edition), 2000, USA, McGraw-Hill Companies.
  • J. Wang, Analytical Electrochemistry (2. edition), 2000, USA, New York: Wiley-VCH.
  • J.P. Hart, Electroanalysis of Biologically Important Compounds (1. edition), 1990, UK, Chichester.
  • R. Kellner, J.M. Mermet, M. Otto, M. Valcárcel, H.M. Widmer, Analytical Chemistry: A Modern Approach to Analytical Science (2. edition), 2004, USA, Weinheim: Wiley-VCH.
  • D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (1. edition), 1993, USA, New York: Wiley-VCH.
  • G. Christian, Analytical Chemistry (7. edition), 2013, USA, NJ: Wiley.
  • F. Ağın, A Review of voltametric methods for determination of dopamine agonists, Curr Anal Chem, 17, 2021, 1104-1113.
  • V.K. Gupta, R. Jain, K. Radhapyari, N. Jadon, S. Agarwal, Voltammetric techniques for the assay of pharmaceuticals - A review, Anal Biochem, 408, 2011, 179-196.
  • B. Uslu, S.A. Ozkan, Electroanalytical application of carbon based electrodes to the pharmaceuticals, Anal. Lett. 40, 2007, 817-853.
  • A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications (2. edition), 2000, USA, New York:Wiley.
  • C.G. Zoski, Handbook of Electrochemistry (1. edition), 2007, Holland, Amsterdam.
  • D. Harvey, Modern Analytical Chemistry (1. edition), 2000, USA, McGraw-Hill Companies.
  • S.A. Ozkan, Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in forms and biological samples, Curr Pharm Anal, 5, 2009, 127-143.
  • F. Scholz, Electroanalytical Methods (2. edition), 2010, Germany, Berlin, Heidelberg: Springer-Verlag.
  • F. Ağın, S. Atal, Electroanalytical determination of anti-inflammatory drug tenoxicam in pharmaceutical dosage forms, Turk J Pharm Sci, 16, 2019, 184-191.
  • V. Mirceski, S. Komorsky-Lovric, M. Lovric, Square Wave Voltammetry (1. edition), 2007, Germany, Berlin.
  • B. Uslu, S.A. Ozkan, Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments, Anal Lett, 44, 2011, 2644-2702.
  • P.T. Kissinger, W.R. Heineman, Laboratory Techniques in Electroanalytical Chemistry (2. edition), 1996, USA, New York.
  • J. Wang, Analytical Electrochemistry (2. edition), 2006, USA, Wiley.
  • S. Uruc, O. Gorduk, Y. Sahin, Electroanalytical determination of Allura Red in beverage samples using an anodically pretreated graphite electrode, Int. J. Environ. Anal. Chem, 2021, 1-19.
  • T.A. Silva, A. Wong, O. Fatibello-Filho, Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders, Talanta, 209, 2020, 120588.
  • G. Li, J. Wu, H. Jin, Y. Xia, J. Liu, Q. He, et al., Titania/electro-reduced graphene oxide nanohybrid as an efficient electrochemical sensor for the determination of Allura Red, Nanomaterials, 10, 2020, 307.
  • P. Sierra‐Rosales, C. Toledo‐Neira, P. Ortúzar‐Salazar, J.A. Squella, MWCNT modified electrode for voltammetric determination of Allura Red and brilliant blue FCF in isotonic sport drinks, Electroanalysis, 31, 2019, 883-890.
  • J. Penagos‐Llanos, O. García‐Beltrán, J.A. Calderón, E. Nagles, J.J. Hurtado, Carbon paste composite with Co3O4 as a new electrochemical sensor for the detection of Allura Red by reduction, Electroanalysis, 31, 2019, 695-703.
  • E. Nagles, O. García-Beltrán, Determination of Allura Red in the presence of cetylpyridinium bromide by square-wave adsorptive stripping voltammetry on a glassy carbon electrode, Anal Sci, 34, 2018, 1171-1175.
  • L. Yu, M. Shi, X. Yue, L. Qu, Detection of Allura Red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode, Sens. Actuators B Chem, 225, 2016, 398-404.
  • J. Zhang, S. Zhang, X. Wang, W. Wang, Z. Chen, Simultaneous determination of Ponceau-4R and Allura Red in soft drinks based on the ionic liquid modified expanded graphite paste electrode, Int. J. Environ. Anal. Chem, 95, 2015, 581-591.
  • T. Gan, J. Sun, H. Zhu, J. Zhu, D. Liu, Synthesis and characterization of graphene and ordered mesoporous TiO2 as electrocatalyst for the determination of azo colorants, J Solid State Electrochem, 17, 2013, 2193-2201.
  • E. Nagles, M. Ceroni, C. Villanueva Huerta, J.J. Hurtado, Simultaneous electrochemical determination of paracetamol and Allura Red in pharmaceutical doses and food using a Mo (VI) oxide‐carbon paste microcomposite, Electroanalysis, 33, 2021, 2335-2344.
  • M.A. Bukharinova, E.I. Khamzina, N.Y. Stozhko, A.V. Tarasov, Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite, Anal. Chim. Acta, 2023, 341481.
  • M. Mehmandoust, P. Pourhakkak, F. Hasannia, Ö. Özalp, M. Soylak, N. Erk, A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation, Food Chem. Toxicol, 164, 2022, 113080.
  • K. Zhang, H. Zeng, J. Feng, Z. Liu, Z. Chu, W. Jin, Screen-printing of core-shell Mn3O4@C nanocubes based sensing microchip performing ultrasensitive recognition of allura red, Food Chem. Toxicol., 162, 2022, 112908.
  • M.M. Moarefdoust, S. Jahani, M. Moradalizadeh, M.M. Motaghi, M.M. Foroughi, Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of Allura Red in soft drink powders, Monatsh. Chem, 152, 2021, 1515-1525.
  • T.G.H. Le, T.M. Nguyen, T.T.N. Pham, T.B. Do, M.G.H. Dang, T.T.K. Nguyen, Electrochemical study of allura red at glassy carbon electrode modified with the reduced graphene oxide and its determination in food by adsorptive stripping voltammetry, Anal. Bioanal. Electrochem, 15, 2023, 371-381.
  • Y. Cai, W. Huang, K. Wu, Morphology-controlled electrochemical sensing of erbium-benzenetricarboxylic acid frameworks for azo dyes and flavonoids, Sens. Actuators B Chem, 304, 2020, 127-370.
  • Y. Zhang, X. Zhang, X. Lu, J. Yang, K. Wu, Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red, Food Chem, 122, 2010, 909-913.
  • M.L.S. Silva, M.B.Q. Garcia, J.L. Lima, E. Barrado, Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system, Talanta, 72, 2007, 282-288.
  • J.A. Rodríguez, M.G. Juárez, C.A. Galán‐Vidal, J.M. Miranda, E. Barrado, Determination of allura red and tartrazine in food samples by sequential injection analysis combined with voltammetric detection at antimony film electrode, Electroanalysis, 27, 2015, 2329-2334.
  • M. Wang, J. Zhao, A facile method used for simultaneous determination of ponceau 4R, allura red and tartrazine in alcoholic beverages, J. Electrochem. Soc, 162, 2015, H321.
  • Q. Cheng, S. Xia, J. Tong, K. Wu, Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon, Anal. Chim. Acta, 887, 2015, 75-81.
  • M. Cui, M. Wang, B. Xu, X. Shi, D. Han, J. Guo, Determination of allura red using composites of water-dispersible reduced graphene oxide-loaded Au nanoparticles based on ionic liquid, Int. J. Environ. Anal. Chem, 96, 2016, 1117-1127.
  • S. Tvorynska, B. Josypčuk, J. Barek, L. Dubenska, Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes, Food Anal. Methods, 12, 2019, 409-421.

Voltammetric methods for determination of Allura Red AC in foods and beverages

Year 2024, , 40 - 49, 30.06.2024
https://doi.org/10.51435/turkjac.1407921

Abstract

Allura Red AC, is one of the azo group dyes, finds extensive application in foods and beverages such as fruit juices, baked goods, meat products, and confections. The substantial consumption of Allura Red AC has been associated with potential adverse effects on human health, like food intolerance, allergies, cancer, attention deficit hyperactivity disorder, multiple sclerosis, brain damage, cardiac diseases, nausea, and asthma, largely attributed to the reaction involving aromatic azo compounds. Therefore, controlling amount of the Allura Red AC in food and beverage is very crucial. The voltammetric analysis of Allura Red AC offers numerous benefits, including high sensitivity, selectivity and rapidity. Furthermore, these methods are characterized by their robustness, reproducibility and user-friendliness. This review is gathered to the comparison of voltammetric methods being in the literature for determination of Allura Red AC in foods and beverages.

References

  • O.I. Lipskiksh, E.I. Korotkova, P. Khristunova Ye, J. Barek, B. Kratochvil, Sensors for voltametric determination of food azo dyes - A critical review, Electro Chim Acta, 260, 2018, 974-985.
  • N. Martins, C.L. Roriz, P. Morales, L. Barros, I.C.F.R. Ferreira, Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices, Trends Food Sci, 52, 2016, 1-15.
  • P. Amchova, H. Kotolova, J. Ruda-Kucerova, Health safety issues of synthetic food colorants, Regul Toxicol Pharmacol, 73, 2015, 914-922.
  • S. Adeel, S Rafi, M.A. Mustaan, M. Salman, A. Ghaffar, Handbook of Renewable Materials for Coloration and Finishing (1. edition), 2018, USA, Wiley.
  • K. Rovina, S. Siddiquee, S.M. Shaarani, Extraction, analytical and advanced methods for detection of Allura Red AC (E129) in food and beverages products, Front Microbiol, 7, 2016, 798.
  • A.H. Alghamdi, Determination of Allura Red in some food samples by adsorptive stripping voltammetry, J AOAC Int, 88, 2005, 1387-1393.
  • C.V. Vorhees, R.E. Butcher, R.L. Brunner, V. Wootten, T.J. Sobotka, Developmental toxicity and psychotoxicity of FD and C red dye no. 40 (Allura Red AC) in rats, Toxicology, 28, 1983, 207-217.
  • E. Dinç, E. Baydan, M. Kanbur, F. Onur, Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 58, 2005, 579-594.
  • M.G. Kiseleva, V.V. Pimenova, K.I. Eller, Optimization of conditions for the HPLC determination of synthetic dyes in food, J Anal Chem, 58, 2003, 685-690.
  • N. Yoshioka, K. Ichihashi, Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection, Talanta, 74, 2008, 1408-1413.
  • K.L. Kuo, H.Y. Huang, Y.Z. Hsieh, High-performance capillary electrophoretic analysis of synthetic food colorants, Chromatographia, 47, 1998, 249-256.
  • K. Pliuta, A. Chebotarev, A. Pliuta, D. Snigur, Voltammetric determination of Allura Red AC onto carbone-paste electrode modified by silica with embedded cetylpyridinium chloride, Electroanalysis, 33. 2021, 987-992.
  • D. Harvey, Modern Analytical Chemistry (1. edition), 2000, USA, McGraw-Hill Companies.
  • J. Wang, Analytical Electrochemistry (2. edition), 2000, USA, New York: Wiley-VCH.
  • J.P. Hart, Electroanalysis of Biologically Important Compounds (1. edition), 1990, UK, Chichester.
  • R. Kellner, J.M. Mermet, M. Otto, M. Valcárcel, H.M. Widmer, Analytical Chemistry: A Modern Approach to Analytical Science (2. edition), 2004, USA, Weinheim: Wiley-VCH.
  • D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (1. edition), 1993, USA, New York: Wiley-VCH.
  • G. Christian, Analytical Chemistry (7. edition), 2013, USA, NJ: Wiley.
  • F. Ağın, A Review of voltametric methods for determination of dopamine agonists, Curr Anal Chem, 17, 2021, 1104-1113.
  • V.K. Gupta, R. Jain, K. Radhapyari, N. Jadon, S. Agarwal, Voltammetric techniques for the assay of pharmaceuticals - A review, Anal Biochem, 408, 2011, 179-196.
  • B. Uslu, S.A. Ozkan, Electroanalytical application of carbon based electrodes to the pharmaceuticals, Anal. Lett. 40, 2007, 817-853.
  • A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications (2. edition), 2000, USA, New York:Wiley.
  • C.G. Zoski, Handbook of Electrochemistry (1. edition), 2007, Holland, Amsterdam.
  • D. Harvey, Modern Analytical Chemistry (1. edition), 2000, USA, McGraw-Hill Companies.
  • S.A. Ozkan, Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in forms and biological samples, Curr Pharm Anal, 5, 2009, 127-143.
  • F. Scholz, Electroanalytical Methods (2. edition), 2010, Germany, Berlin, Heidelberg: Springer-Verlag.
  • F. Ağın, S. Atal, Electroanalytical determination of anti-inflammatory drug tenoxicam in pharmaceutical dosage forms, Turk J Pharm Sci, 16, 2019, 184-191.
  • V. Mirceski, S. Komorsky-Lovric, M. Lovric, Square Wave Voltammetry (1. edition), 2007, Germany, Berlin.
  • B. Uslu, S.A. Ozkan, Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments, Anal Lett, 44, 2011, 2644-2702.
  • P.T. Kissinger, W.R. Heineman, Laboratory Techniques in Electroanalytical Chemistry (2. edition), 1996, USA, New York.
  • J. Wang, Analytical Electrochemistry (2. edition), 2006, USA, Wiley.
  • S. Uruc, O. Gorduk, Y. Sahin, Electroanalytical determination of Allura Red in beverage samples using an anodically pretreated graphite electrode, Int. J. Environ. Anal. Chem, 2021, 1-19.
  • T.A. Silva, A. Wong, O. Fatibello-Filho, Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders, Talanta, 209, 2020, 120588.
  • G. Li, J. Wu, H. Jin, Y. Xia, J. Liu, Q. He, et al., Titania/electro-reduced graphene oxide nanohybrid as an efficient electrochemical sensor for the determination of Allura Red, Nanomaterials, 10, 2020, 307.
  • P. Sierra‐Rosales, C. Toledo‐Neira, P. Ortúzar‐Salazar, J.A. Squella, MWCNT modified electrode for voltammetric determination of Allura Red and brilliant blue FCF in isotonic sport drinks, Electroanalysis, 31, 2019, 883-890.
  • J. Penagos‐Llanos, O. García‐Beltrán, J.A. Calderón, E. Nagles, J.J. Hurtado, Carbon paste composite with Co3O4 as a new electrochemical sensor for the detection of Allura Red by reduction, Electroanalysis, 31, 2019, 695-703.
  • E. Nagles, O. García-Beltrán, Determination of Allura Red in the presence of cetylpyridinium bromide by square-wave adsorptive stripping voltammetry on a glassy carbon electrode, Anal Sci, 34, 2018, 1171-1175.
  • L. Yu, M. Shi, X. Yue, L. Qu, Detection of Allura Red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode, Sens. Actuators B Chem, 225, 2016, 398-404.
  • J. Zhang, S. Zhang, X. Wang, W. Wang, Z. Chen, Simultaneous determination of Ponceau-4R and Allura Red in soft drinks based on the ionic liquid modified expanded graphite paste electrode, Int. J. Environ. Anal. Chem, 95, 2015, 581-591.
  • T. Gan, J. Sun, H. Zhu, J. Zhu, D. Liu, Synthesis and characterization of graphene and ordered mesoporous TiO2 as electrocatalyst for the determination of azo colorants, J Solid State Electrochem, 17, 2013, 2193-2201.
  • E. Nagles, M. Ceroni, C. Villanueva Huerta, J.J. Hurtado, Simultaneous electrochemical determination of paracetamol and Allura Red in pharmaceutical doses and food using a Mo (VI) oxide‐carbon paste microcomposite, Electroanalysis, 33, 2021, 2335-2344.
  • M.A. Bukharinova, E.I. Khamzina, N.Y. Stozhko, A.V. Tarasov, Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite, Anal. Chim. Acta, 2023, 341481.
  • M. Mehmandoust, P. Pourhakkak, F. Hasannia, Ö. Özalp, M. Soylak, N. Erk, A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation, Food Chem. Toxicol, 164, 2022, 113080.
  • K. Zhang, H. Zeng, J. Feng, Z. Liu, Z. Chu, W. Jin, Screen-printing of core-shell Mn3O4@C nanocubes based sensing microchip performing ultrasensitive recognition of allura red, Food Chem. Toxicol., 162, 2022, 112908.
  • M.M. Moarefdoust, S. Jahani, M. Moradalizadeh, M.M. Motaghi, M.M. Foroughi, Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of Allura Red in soft drink powders, Monatsh. Chem, 152, 2021, 1515-1525.
  • T.G.H. Le, T.M. Nguyen, T.T.N. Pham, T.B. Do, M.G.H. Dang, T.T.K. Nguyen, Electrochemical study of allura red at glassy carbon electrode modified with the reduced graphene oxide and its determination in food by adsorptive stripping voltammetry, Anal. Bioanal. Electrochem, 15, 2023, 371-381.
  • Y. Cai, W. Huang, K. Wu, Morphology-controlled electrochemical sensing of erbium-benzenetricarboxylic acid frameworks for azo dyes and flavonoids, Sens. Actuators B Chem, 304, 2020, 127-370.
  • Y. Zhang, X. Zhang, X. Lu, J. Yang, K. Wu, Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red, Food Chem, 122, 2010, 909-913.
  • M.L.S. Silva, M.B.Q. Garcia, J.L. Lima, E. Barrado, Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system, Talanta, 72, 2007, 282-288.
  • J.A. Rodríguez, M.G. Juárez, C.A. Galán‐Vidal, J.M. Miranda, E. Barrado, Determination of allura red and tartrazine in food samples by sequential injection analysis combined with voltammetric detection at antimony film electrode, Electroanalysis, 27, 2015, 2329-2334.
  • M. Wang, J. Zhao, A facile method used for simultaneous determination of ponceau 4R, allura red and tartrazine in alcoholic beverages, J. Electrochem. Soc, 162, 2015, H321.
  • Q. Cheng, S. Xia, J. Tong, K. Wu, Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon, Anal. Chim. Acta, 887, 2015, 75-81.
  • M. Cui, M. Wang, B. Xu, X. Shi, D. Han, J. Guo, Determination of allura red using composites of water-dispersible reduced graphene oxide-loaded Au nanoparticles based on ionic liquid, Int. J. Environ. Anal. Chem, 96, 2016, 1117-1127.
  • S. Tvorynska, B. Josypčuk, J. Barek, L. Dubenska, Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes, Food Anal. Methods, 12, 2019, 409-421.
There are 54 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section Rewiev
Authors

Elif Şişman 0000-0003-4092-3195

Fatma Ağın 0000-0002-6973-4323

Publication Date June 30, 2024
Submission Date December 21, 2023
Acceptance Date March 22, 2024
Published in Issue Year 2024

Cite

APA Şişman, E., & Ağın, F. (2024). Voltammetric methods for determination of Allura Red AC in foods and beverages. Turkish Journal of Analytical Chemistry, 6(1), 40-49. https://doi.org/10.51435/turkjac.1407921
AMA Şişman E, Ağın F. Voltammetric methods for determination of Allura Red AC in foods and beverages. TurkJAC. June 2024;6(1):40-49. doi:10.51435/turkjac.1407921
Chicago Şişman, Elif, and Fatma Ağın. “Voltammetric Methods for Determination of Allura Red AC in Foods and Beverages”. Turkish Journal of Analytical Chemistry 6, no. 1 (June 2024): 40-49. https://doi.org/10.51435/turkjac.1407921.
EndNote Şişman E, Ağın F (June 1, 2024) Voltammetric methods for determination of Allura Red AC in foods and beverages. Turkish Journal of Analytical Chemistry 6 1 40–49.
IEEE E. Şişman and F. Ağın, “Voltammetric methods for determination of Allura Red AC in foods and beverages”, TurkJAC, vol. 6, no. 1, pp. 40–49, 2024, doi: 10.51435/turkjac.1407921.
ISNAD Şişman, Elif - Ağın, Fatma. “Voltammetric Methods for Determination of Allura Red AC in Foods and Beverages”. Turkish Journal of Analytical Chemistry 6/1 (June 2024), 40-49. https://doi.org/10.51435/turkjac.1407921.
JAMA Şişman E, Ağın F. Voltammetric methods for determination of Allura Red AC in foods and beverages. TurkJAC. 2024;6:40–49.
MLA Şişman, Elif and Fatma Ağın. “Voltammetric Methods for Determination of Allura Red AC in Foods and Beverages”. Turkish Journal of Analytical Chemistry, vol. 6, no. 1, 2024, pp. 40-49, doi:10.51435/turkjac.1407921.
Vancouver Şişman E, Ağın F. Voltammetric methods for determination of Allura Red AC in foods and beverages. TurkJAC. 2024;6(1):40-9.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/