Research Article
BibTex RIS Cite

Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation

Year 2024, , 1 - 10, 30.06.2024
https://doi.org/10.51435/turkjac.1433347

Abstract

The objective of this study develop a novel proliposome formulation containing Doxorubicin (Dox) and was to validate sensitive and selective reversed-phase high-performance liquid chromatographic (HPLC) method for the evaluation of Dox concentrations of proliposome formulation. The samples were chromatographed on C18 column (Zorbax Eclipse Plus 5µm 4.6 x 250 mm) using a mobile phase with Sodium Lauryl Sulphate solution:Acetonitrile (%50:%50) and detected 254 nm. Linearity was confirmed in the concentration range 10.0–75.0 µg/mL. Specificity, linearity, working range, LOD, LOQ, accuracy, precision, robustness and system suitability studies were done from HPLC validation parameters. Liposome formulation containing Dox was developed by pH gradient method then proliposome formulation was developed with lyophilisation technique. The developed HPLC method, the encapsulation capacity (EE%) was found to be 90%±0.5 and the drug loading capacity (DL%) was found to be 100.0%±0.3. In addition, in vitro release studies and stability study results were evaluated with validated HPLC method. It was observed that developed Dox-proliposome formulation increased Dox release at pH 5.5, pH 6.5 and pH 7.5 by 23.9%, 30.2% and 14.8%, respectively, compared to commercial product. The result of F2 test performed in pH 7.5 media was 51.4%. According to the results of the physicochemical tests performed within the stability studies, it was observed that there was no significant change at the end of 12 months. These results show that the HPLC method developed, and validation study performed are important and applicable in the development, characterization, in vitro release and stability studies of the novel proliposome formulation.

References

  • A.F. Yu, A.T. Chan, Steingart RM, Cardiac Magnetic Resonance and Cardio-Oncology: Does T 2 Signal the End of Anthracycline Cardiotoxicity, J Am Coll Cardiol 73(7), 2019, 792–4.
  • G. Marcq, E. Jarry, I. Ouzaid, J. Hermieu, F. Henon, J.C. Fantoni and E. Xylinas, Contemporary best practice in the use of neoadjuvant chemotherapy in muscle-invasive bladder cancer, Therapeutic Advances in Urology, 11, 2019, 1–8.
  • M. Kciuk, A. Gielecinska, S. Mujwar, D. Kołat, Z. Kałuzinska-Kołat, I. Celik, R. Kontek, Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity, Cells, 659 (12), 2023, 1–30.
  • A.Z. Luu, B. Chowdhury, M. Al-Omran, H. Teoh, D.A. Hess, S. Verma, Role of Endothelium in Doxorubicin-Induced Cardiomyopathy, JACC Basic to Transl Sci, 3(6), 2018, 861–70.
  • M. Pipicz, V. Demján, M. Sárközy, T. Csont, Effects of cardiovascular risk factors on cardiac STAT3, Int J Mol Sci, 19(11), 2018, 1–29.
  • J. Shaji, V. Bhatia, Proliposomes: A brief overview of novel delivery system, Int J Pharma Bio Sci, 4(1), 2013, 150–60.
  • N.I. Payne, C.V. Ambrose, P. Timmins, M.D. Ward, F. Ridgway, Proliposomes: A novel solution to an old problem, J Pharm Sci, 75(4),1986, 325–9.
  • D. Chordiya, S. Shilpi, D. Choudhary, Proliposomes: a potential colloidal carrier for drug delivery applications, Advances in Pharmaceutical Product Development and Research, 2020, 581–608.
  • K.Y. Janga, R. Jukanti, A. Velpula, S. Sunkavalli, S. Bandari, P. Kandadi, et al., Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur J Pharm Biopharm, 80(2), 2012, 347–57.
  • C. Chu, S.S. Tong, Y. Xu, L. Wang, M. Fu, Y.R. Ge, et al., Proliposomes for oral delivery of dehydrosilymarin: Preparation and evaluation in vitro and in vivo, Acta Pharmacol Sin, 32(7), 2011, 973–80.
  • N. Singh, P. Kushwaha, U. Ahmad, M. Abdullah, Proliposomes : An Approach for the Development of Stable Liposome Proliposomas: Una aproximación para el desarrollo de liposoma estables, Ars Pharm, 60(4), 2019, 231–40.
  • S. Muneer, Z. Masood, t S. But, S. Anjum, H. Zainab, N. Anwar, et al., Proliposomes as Pharmaceutical Drug Delivery System : A Brief Review Nanomedicine & Nanotechnology Proliposomes as Pharmaceutical Drug Delivery System : A Brief Review, 2017.
  • M. Doltade, R. Saudagar, Analytical Method Development and Validation: a Review, Int J Pharm Biol Sci Arch, 9(3), 2019, 563–70.
  • S. Sharma, S. Goyal, K. Chauhan, A review on analytical method development and validation, Int J Appl Pharm, 10(6), 2018, 8–15.
  • A. Rahdar, Hajinezhad, H. Hamishekar, A. Ghamkhari, G.Z. Kyzas, Copolymer/graphene oxide nanocomposites as potential anticancer agents, Polym Bull, 78(9), 2021,4877–98.
  • I. Rus, M. Tertiș, V. Paşcalău, C. Pavel, B. Melean, M. Suciu, et al., Simple and fast analytical method for the evaluation of the encapsulation and release profile of doxorubicin from drug delivery systems, Farmacia, 69(4), 2021,670–81.
  • P. Laxmi, A. Varma, A. Pai , M.B. Sathyanarayana, Experimental data of fabricated co-crystals of doxorubicin HCl with flavonoids, Indian J Pharm Educ Res, 53(3), 2019, S225–30.
  • L.E. Scheeren, D.R. Nogueira-Librelotto, J.R. Fernandes, L.B. Macedo, A.I.P. Marcolino, M.P. Vinardell, C.M.B. Rolim, Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles, Anal Lett, 51(10), 2018, 1445–63.
  • Y. Du, L. Xia, A. Jo, R.M. Davis, P. Bissel, M.F. Ehrich, et al, Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery, Bioconjug Chem, 29(2), 2018, 420–30.
  • Gowda BG, Hanumanthanaik D. Development and Validation of RP-HPLC Method for the Determination of Doxorubicin Hydrochloride in Pure and Pharmaceutical Dosage Forms, Int J Adv Technol Eng Sci, 2017, 5(6), 323–9.
  • J. Lee, M.K. Choi, I.S. Song, Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting, Pharmaceuticals, 16(6), 2023, 802.
  • M. Alyane, G. Barratt, M. Lahouel, Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells, Saudi Pharm J, 24(2), 2016, 165–75.
  • M. Diril, K.V. Özdokur, Y. Yıldırım, H.Y. Karasulu, In vitro evaluation and in vivo efficacy studies of a liposomal doxorubicin-loaded glycyrretinic acid formulation for the Diril et al. Turk J Anal Chem, 6(1), 2024, 11–20 20 treatment of hepatocellular carcinoma, Pharm Dev Technol, 28(10), 2023, 915–27.
  • European Medicines Agency, ICH guideline Q2(R2) on validation of analytical procedures, Vol. 2, 2022.
  • R. Rodriguez, E. Castillo, D. Sinuco, Validation of an HPLC method for determination of bisphenol-A migration from baby feeding bottles, J Anal Methods Chem, 2019.
  • A.K. De, P.P. Chowdhury, S. Chattapadhyay, Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation, Scientifica (Cairo), 2016.
  • L. Zou, F. Chen, J. Bao, S. Wang, L. Wang, M. Chen, et al., Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles, Drug Deliv, 23(3), 2016, 908–16.
  • FDA, Draft Guidance on Doxorubicin Hydrochloride, Vol. 1, Draft Guidance on Doxorubicin Hydrochloride, 2018. [29] D.R. Nogueira, L.B. Macedo, L.E. Scheeren, M. Mitjans, Infante MR, Rolim CMB, et al., Determination of Methotrexate in pH-Sensitive Chitosan Nanoparticles by Validated RP-LC and UV Spectrophotometric Methods, J Appl Biopharm Pharmacokinet, 2, 2014,59–67.
  • L.E. Scheeren, D.R. Nogueira-Librelotto, J.R. Fernandes, L.B. Macedo, A.I.P Marcolino, M.P. Vinardell, et al., Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles, Anal Lett, 51(10), 2018, 1445–63.
  • S. Rao, Y. Song, F. Peddie, A.M. Evans, Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs, Int J Nanomedicine, 6, 2011,1245–51.
  • R.C. Lino, S.M. de Carvalho, C.M. Noronha, W.G. Sganzerla, M.R. Nunes, C.G. da Rosa, et al., Development and Characterization of Poly-ε- caprolactone Nanocapsules Containing carotene Using the Nanoprecipitation Method and Optimized by Response Surface Methodology, Brazilian Arch Biol Technol, 2020, 63.
  • J.D. Castile, K.M.G. Taylor, Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion, Int J Pharm, 188(1), 1999, 87–95.
  • I. Sopyan, I. Sunan, D. Gozali, A Review: A Novel of Efforts to Enhance Liposome Stability as Drug Delivery Approach, Sys Rev Pharm, 2020, 11(6), 555 562.
  • Y. Wang, D.W., Grainger, Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments, Adv Drug Deliv Rev, 2019,151–152. S.S. Kulkarni, R. Suryanarayanan, J.V. Rinella, Bogner RH, Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations, Eur J Pharm Biopharm, 131, 2018, 70–81.
  • M.R. Toh, G.N.C. Chiu, Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing, Asian J Pharm Sci, 8(2), 2013, 88–95.
  • J. Ermer, Validation in pharmaceutical analysis, Part I: An integrated approach, J Pharm Biomed Anal, 24, 2001, 755–67.
  • N.N. Ferreira, F.I. Boni, F. Baltazar, M.P.D. Gremião, Validation of an innovative analytical method for simultaneous quantification of alpha-cyano-4-hydroxycinnamic acid and the monoclonal antibody cetuximab using HPLC from PLGA-based nanoparticles, J Pharm Biomed Anal, 2020, 190.
  • U.S. Department of Health and Human Services Food and Drug Administration, Guidance for Industry, 2015, 1-18.
  • S.M. Rafiyath, M. Rasul, B. Lee, G. Wei, G. Lamba, D. Liu, Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis, Exp Hematol Oncol, 1(1), 2012,1–9.
  • M.A. Abri, R. Bagheri, J. Mosafer, B. Baradaran, M. Hashemzaei, A. Baghbanzadeh, M. Guardia, A. Mokhtarzadeh, Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release, J Control Release, 315, 2019, 1–22.
  • F. Haghiralsadat, G. Amoabediny, M.N. Helder, M.H. Sheikhha, T. Forouzanfar, B. Zandieh-doulabi, A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery, Artif Cells, Nanomedicine, Biotechnol, 2017.
  • Z.A. Mohammadi, S.F. Aghamiri, A. Zarrabi, M. Reza Talaie, Liposomal Doxorubicin Delivery Systems: Effects of Formulation and Processing Parameters on Drug Loading and Release Behavior, Curr Drug Deliv, 13(7), 2016, 1065–70.
  • M. Anderson, A. Omri, The Effect of Different Lipid Components on the In Vitro Stability and Release Kinetics of Liposome Formulations, Drug Delivery, 11, 2004, 33–9.
  • G. Liu, K. McEnnis, Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications, Polymers (Basel), 14(5), 2022.
  • L. Peng, C. Guiliang, Jingchen Z., A Review of Liposomes as a Drug Delivery System: Current, Molecules, 27(1372), 2022, 1–23.
  • M. Fazel, M. Daeihamed, M. Osouli, A. Almasi, A. Haeri, S. Dadashzadeh, Preparation, in-vitro characterization and pharmacokinetic evaluation of brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy, Iran J Pharm Res, 17, 2018, 33–43.
  • E. Csuhai, S. Kangarlou, T.X. Xiang, A. Ponta, P. Bummer, D. Choi, et al., Determination of key parameters for a mechanism-based model to predict doxorubicin release from actively loaded liposomes, J Pharm Sci, 104(3), 2015, 1087–98.
  • U.S. Food and Drug Administration (FDA), FDA guidance for industry dissolution testing of immediate release solid oral dosage forms, In: Dissolution Testing of Immediate Release Solid Oral Dosage Forms US, 1997.
Year 2024, , 1 - 10, 30.06.2024
https://doi.org/10.51435/turkjac.1433347

Abstract

References

  • A.F. Yu, A.T. Chan, Steingart RM, Cardiac Magnetic Resonance and Cardio-Oncology: Does T 2 Signal the End of Anthracycline Cardiotoxicity, J Am Coll Cardiol 73(7), 2019, 792–4.
  • G. Marcq, E. Jarry, I. Ouzaid, J. Hermieu, F. Henon, J.C. Fantoni and E. Xylinas, Contemporary best practice in the use of neoadjuvant chemotherapy in muscle-invasive bladder cancer, Therapeutic Advances in Urology, 11, 2019, 1–8.
  • M. Kciuk, A. Gielecinska, S. Mujwar, D. Kołat, Z. Kałuzinska-Kołat, I. Celik, R. Kontek, Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity, Cells, 659 (12), 2023, 1–30.
  • A.Z. Luu, B. Chowdhury, M. Al-Omran, H. Teoh, D.A. Hess, S. Verma, Role of Endothelium in Doxorubicin-Induced Cardiomyopathy, JACC Basic to Transl Sci, 3(6), 2018, 861–70.
  • M. Pipicz, V. Demján, M. Sárközy, T. Csont, Effects of cardiovascular risk factors on cardiac STAT3, Int J Mol Sci, 19(11), 2018, 1–29.
  • J. Shaji, V. Bhatia, Proliposomes: A brief overview of novel delivery system, Int J Pharma Bio Sci, 4(1), 2013, 150–60.
  • N.I. Payne, C.V. Ambrose, P. Timmins, M.D. Ward, F. Ridgway, Proliposomes: A novel solution to an old problem, J Pharm Sci, 75(4),1986, 325–9.
  • D. Chordiya, S. Shilpi, D. Choudhary, Proliposomes: a potential colloidal carrier for drug delivery applications, Advances in Pharmaceutical Product Development and Research, 2020, 581–608.
  • K.Y. Janga, R. Jukanti, A. Velpula, S. Sunkavalli, S. Bandari, P. Kandadi, et al., Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur J Pharm Biopharm, 80(2), 2012, 347–57.
  • C. Chu, S.S. Tong, Y. Xu, L. Wang, M. Fu, Y.R. Ge, et al., Proliposomes for oral delivery of dehydrosilymarin: Preparation and evaluation in vitro and in vivo, Acta Pharmacol Sin, 32(7), 2011, 973–80.
  • N. Singh, P. Kushwaha, U. Ahmad, M. Abdullah, Proliposomes : An Approach for the Development of Stable Liposome Proliposomas: Una aproximación para el desarrollo de liposoma estables, Ars Pharm, 60(4), 2019, 231–40.
  • S. Muneer, Z. Masood, t S. But, S. Anjum, H. Zainab, N. Anwar, et al., Proliposomes as Pharmaceutical Drug Delivery System : A Brief Review Nanomedicine & Nanotechnology Proliposomes as Pharmaceutical Drug Delivery System : A Brief Review, 2017.
  • M. Doltade, R. Saudagar, Analytical Method Development and Validation: a Review, Int J Pharm Biol Sci Arch, 9(3), 2019, 563–70.
  • S. Sharma, S. Goyal, K. Chauhan, A review on analytical method development and validation, Int J Appl Pharm, 10(6), 2018, 8–15.
  • A. Rahdar, Hajinezhad, H. Hamishekar, A. Ghamkhari, G.Z. Kyzas, Copolymer/graphene oxide nanocomposites as potential anticancer agents, Polym Bull, 78(9), 2021,4877–98.
  • I. Rus, M. Tertiș, V. Paşcalău, C. Pavel, B. Melean, M. Suciu, et al., Simple and fast analytical method for the evaluation of the encapsulation and release profile of doxorubicin from drug delivery systems, Farmacia, 69(4), 2021,670–81.
  • P. Laxmi, A. Varma, A. Pai , M.B. Sathyanarayana, Experimental data of fabricated co-crystals of doxorubicin HCl with flavonoids, Indian J Pharm Educ Res, 53(3), 2019, S225–30.
  • L.E. Scheeren, D.R. Nogueira-Librelotto, J.R. Fernandes, L.B. Macedo, A.I.P. Marcolino, M.P. Vinardell, C.M.B. Rolim, Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles, Anal Lett, 51(10), 2018, 1445–63.
  • Y. Du, L. Xia, A. Jo, R.M. Davis, P. Bissel, M.F. Ehrich, et al, Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery, Bioconjug Chem, 29(2), 2018, 420–30.
  • Gowda BG, Hanumanthanaik D. Development and Validation of RP-HPLC Method for the Determination of Doxorubicin Hydrochloride in Pure and Pharmaceutical Dosage Forms, Int J Adv Technol Eng Sci, 2017, 5(6), 323–9.
  • J. Lee, M.K. Choi, I.S. Song, Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting, Pharmaceuticals, 16(6), 2023, 802.
  • M. Alyane, G. Barratt, M. Lahouel, Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells, Saudi Pharm J, 24(2), 2016, 165–75.
  • M. Diril, K.V. Özdokur, Y. Yıldırım, H.Y. Karasulu, In vitro evaluation and in vivo efficacy studies of a liposomal doxorubicin-loaded glycyrretinic acid formulation for the Diril et al. Turk J Anal Chem, 6(1), 2024, 11–20 20 treatment of hepatocellular carcinoma, Pharm Dev Technol, 28(10), 2023, 915–27.
  • European Medicines Agency, ICH guideline Q2(R2) on validation of analytical procedures, Vol. 2, 2022.
  • R. Rodriguez, E. Castillo, D. Sinuco, Validation of an HPLC method for determination of bisphenol-A migration from baby feeding bottles, J Anal Methods Chem, 2019.
  • A.K. De, P.P. Chowdhury, S. Chattapadhyay, Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation, Scientifica (Cairo), 2016.
  • L. Zou, F. Chen, J. Bao, S. Wang, L. Wang, M. Chen, et al., Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles, Drug Deliv, 23(3), 2016, 908–16.
  • FDA, Draft Guidance on Doxorubicin Hydrochloride, Vol. 1, Draft Guidance on Doxorubicin Hydrochloride, 2018. [29] D.R. Nogueira, L.B. Macedo, L.E. Scheeren, M. Mitjans, Infante MR, Rolim CMB, et al., Determination of Methotrexate in pH-Sensitive Chitosan Nanoparticles by Validated RP-LC and UV Spectrophotometric Methods, J Appl Biopharm Pharmacokinet, 2, 2014,59–67.
  • L.E. Scheeren, D.R. Nogueira-Librelotto, J.R. Fernandes, L.B. Macedo, A.I.P Marcolino, M.P. Vinardell, et al., Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles, Anal Lett, 51(10), 2018, 1445–63.
  • S. Rao, Y. Song, F. Peddie, A.M. Evans, Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs, Int J Nanomedicine, 6, 2011,1245–51.
  • R.C. Lino, S.M. de Carvalho, C.M. Noronha, W.G. Sganzerla, M.R. Nunes, C.G. da Rosa, et al., Development and Characterization of Poly-ε- caprolactone Nanocapsules Containing carotene Using the Nanoprecipitation Method and Optimized by Response Surface Methodology, Brazilian Arch Biol Technol, 2020, 63.
  • J.D. Castile, K.M.G. Taylor, Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion, Int J Pharm, 188(1), 1999, 87–95.
  • I. Sopyan, I. Sunan, D. Gozali, A Review: A Novel of Efforts to Enhance Liposome Stability as Drug Delivery Approach, Sys Rev Pharm, 2020, 11(6), 555 562.
  • Y. Wang, D.W., Grainger, Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments, Adv Drug Deliv Rev, 2019,151–152. S.S. Kulkarni, R. Suryanarayanan, J.V. Rinella, Bogner RH, Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations, Eur J Pharm Biopharm, 131, 2018, 70–81.
  • M.R. Toh, G.N.C. Chiu, Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing, Asian J Pharm Sci, 8(2), 2013, 88–95.
  • J. Ermer, Validation in pharmaceutical analysis, Part I: An integrated approach, J Pharm Biomed Anal, 24, 2001, 755–67.
  • N.N. Ferreira, F.I. Boni, F. Baltazar, M.P.D. Gremião, Validation of an innovative analytical method for simultaneous quantification of alpha-cyano-4-hydroxycinnamic acid and the monoclonal antibody cetuximab using HPLC from PLGA-based nanoparticles, J Pharm Biomed Anal, 2020, 190.
  • U.S. Department of Health and Human Services Food and Drug Administration, Guidance for Industry, 2015, 1-18.
  • S.M. Rafiyath, M. Rasul, B. Lee, G. Wei, G. Lamba, D. Liu, Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis, Exp Hematol Oncol, 1(1), 2012,1–9.
  • M.A. Abri, R. Bagheri, J. Mosafer, B. Baradaran, M. Hashemzaei, A. Baghbanzadeh, M. Guardia, A. Mokhtarzadeh, Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release, J Control Release, 315, 2019, 1–22.
  • F. Haghiralsadat, G. Amoabediny, M.N. Helder, M.H. Sheikhha, T. Forouzanfar, B. Zandieh-doulabi, A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery, Artif Cells, Nanomedicine, Biotechnol, 2017.
  • Z.A. Mohammadi, S.F. Aghamiri, A. Zarrabi, M. Reza Talaie, Liposomal Doxorubicin Delivery Systems: Effects of Formulation and Processing Parameters on Drug Loading and Release Behavior, Curr Drug Deliv, 13(7), 2016, 1065–70.
  • M. Anderson, A. Omri, The Effect of Different Lipid Components on the In Vitro Stability and Release Kinetics of Liposome Formulations, Drug Delivery, 11, 2004, 33–9.
  • G. Liu, K. McEnnis, Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications, Polymers (Basel), 14(5), 2022.
  • L. Peng, C. Guiliang, Jingchen Z., A Review of Liposomes as a Drug Delivery System: Current, Molecules, 27(1372), 2022, 1–23.
  • M. Fazel, M. Daeihamed, M. Osouli, A. Almasi, A. Haeri, S. Dadashzadeh, Preparation, in-vitro characterization and pharmacokinetic evaluation of brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy, Iran J Pharm Res, 17, 2018, 33–43.
  • E. Csuhai, S. Kangarlou, T.X. Xiang, A. Ponta, P. Bummer, D. Choi, et al., Determination of key parameters for a mechanism-based model to predict doxorubicin release from actively loaded liposomes, J Pharm Sci, 104(3), 2015, 1087–98.
  • U.S. Food and Drug Administration (FDA), FDA guidance for industry dissolution testing of immediate release solid oral dosage forms, In: Dissolution Testing of Immediate Release Solid Oral Dosage Forms US, 1997.
There are 48 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry
Journal Section Research Articles
Authors

Mine Diril 0000-0002-7154-8511

Mehmet Ali Ege 0000-0002-4953-2812

Yesim Karasulu 0000-0002-1860-8255

Publication Date June 30, 2024
Submission Date February 7, 2024
Acceptance Date April 5, 2024
Published in Issue Year 2024

Cite

APA Diril, M., Ege, M. A., & Karasulu, Y. (2024). Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation. Turkish Journal of Analytical Chemistry, 6(1), 1-10. https://doi.org/10.51435/turkjac.1433347
AMA Diril M, Ege MA, Karasulu Y. Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation. TurkJAC. June 2024;6(1):1-10. doi:10.51435/turkjac.1433347
Chicago Diril, Mine, Mehmet Ali Ege, and Yesim Karasulu. “Validation of High-Performance Liquid Chromatography Method for the Determination of Doxorubicin in Proliposomal Drug Delivery System Formulation”. Turkish Journal of Analytical Chemistry 6, no. 1 (June 2024): 1-10. https://doi.org/10.51435/turkjac.1433347.
EndNote Diril M, Ege MA, Karasulu Y (June 1, 2024) Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation. Turkish Journal of Analytical Chemistry 6 1 1–10.
IEEE M. Diril, M. A. Ege, and Y. Karasulu, “Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation”, TurkJAC, vol. 6, no. 1, pp. 1–10, 2024, doi: 10.51435/turkjac.1433347.
ISNAD Diril, Mine et al. “Validation of High-Performance Liquid Chromatography Method for the Determination of Doxorubicin in Proliposomal Drug Delivery System Formulation”. Turkish Journal of Analytical Chemistry 6/1 (June 2024), 1-10. https://doi.org/10.51435/turkjac.1433347.
JAMA Diril M, Ege MA, Karasulu Y. Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation. TurkJAC. 2024;6:1–10.
MLA Diril, Mine et al. “Validation of High-Performance Liquid Chromatography Method for the Determination of Doxorubicin in Proliposomal Drug Delivery System Formulation”. Turkish Journal of Analytical Chemistry, vol. 6, no. 1, 2024, pp. 1-10, doi:10.51435/turkjac.1433347.
Vancouver Diril M, Ege MA, Karasulu Y. Validation of High-Performance Liquid Chromatography method for the determination of doxorubicin in proliposomal drug delivery system formulation. TurkJAC. 2024;6(1):1-10.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/