Over the past few decades, carbon quantum dots (CQDs) gained remarkable attention due to their distinctive properties and wide-ranging applications. Usually, CQDs are nano-sized materials, showcase of outstanding optical, electronic, and chemical characteristics. Their synthesis involves the controlled carbonization of diverse carbon-rich precursors, such as organic molecules or waste materials. Their optical properties, including adjustable fluorescence, make them ideal for implementation in bioimaging, sensors, and optoelectronic devices. Their diminutive size, biocompatibility, and minimal toxicity enhance their suitability for applications in biology and medicine. Furthermore, researchers have delved into exploring the potential of CQDs in energy-related domains, such as photo-catalysis, solar cells, and super-capacitors, leveraging their unique electronic structure and catalytic capabilities. Ongoing research continue to uncover their synthesis and fascinating applications due to low toxicity. This review provides comprehensive information on CQDs, including their synthesis, characteristics, and attractive applications.
Carbon quantum dots, bio-imaging, photo-catalyst, nano-medicine, chemical sensor.
Primary Language | English |
---|---|
Subjects | Instrumental Methods, Sensor Technology, Separation Science |
Journal Section | Rewiev |
Authors | |
Publication Date | June 30, 2024 |
Submission Date | March 11, 2024 |
Acceptance Date | April 24, 2024 |
Published in Issue | Year 2024 |