Research Article
BibTex RIS Cite

Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles

Year 2025, Volume: 7 Issue: 2, 176 - 181, 31.05.2025
https://doi.org/10.51435/turkjac.1665889

Abstract

3-methoxy-4-((1-tosyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (3), 4-((1-(ethylsulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (6), 4-((1-((4-chloro phenyl) sulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (9), 4-((4-((1-(ethylsulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzylidene) amino)phenol (7), 4-((4-((1-((4-chlorophenyl) sulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzylidene) amino) phenol (10), 4-((4-((1-tosyl-1H-1,2,3-triazol-4-yl) methoxy) benzylidene)amino) phenol (12) were synthesized. The compounds were characterized by FTIR, 1H-NMR and 13C-NMR spectroscopic methods. The antioxidant properties of the compounds were evaluated using two widely accepted methodologies assays (DPPH and FRAP). Compounds 7 and 10 emerged as the most potent antioxidant candidates, displaying the strongest effects in both assays.

References

  • M. Feng, B. Tang, S.H. Liang, X. Jiang, Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry, Curr Top Med Chem, 16, 2016, 1200-1216.
  • P. Devendar, G.F. Yang, Sulfur-Containing Agrochemicals, Curr Top Med Chem, 82, 2017, 375-382.
  • S. Maker, T. Saha, S.K. Singh, Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective, Eur J Med Chem, 161, 2019, 252-276.
  • R.S. Burden, M.S. Kemp, (−)-7-Hydroxycalamenene, A Phytoalexin From Tilia europaea, Phytochemistry, 22, 1983, 1039-1040.
  • S. Rohrbach, A.J. Smith, J.H. Pang, D.L. Poole, T. Tuttle, S. Chiba, J.A. Murphy, Concerted Nucleophilic Aromatic Substitution Reactions, Angew Chem Int Ed, 58, 2019, 16368-16388.
  • V. Palani, M.A. Perea, R. Sarpong, Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups, Chem Rev, 122, 2022, 10126-10169.
  • B. Swami, D. Yadav, R.S. Menon, Benzannulation and N-Annulation of β-Ketoenamines for Synthesizing Aniline and Pyridine Derivatives Using DMSO as a Methine Source, Chem Rec, 22, 2022, 3736-3742.
  • T. Bera, K. Pandey, R. Ali, The Dötz Benzannulation Reaction: A Booming Methodology for Natural Product Synthesis, Chem Select, 5, 2020, 5239-5267.
  • S.J. Hein, D. Lehnherr, H. Arslan, F.J. Uribe-Romo, W.R. Dichtel, Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures, Acc Chem Res, 50, 2017, 2776-2788.
  • L.J. Wu, L.F. Yang, J.H. Li, Q.A. Wang, Dicarbonylative benzannulation of 3-acetoxy-1,4-enynes with CO and silylboranes by Pd and Cu cooperative catalysis: one-step access to 3-hydroxyarylacylsilanes, Chem Commun, 56, 2020, 1669-1672.
  • T.N. Poudel, R.J.I. Tamargo, H. Cai, Y.R. Lee, Recent Progress in Transition-Metal-Free, Base-Mediated Benzannulation Reactions for the Synthesis of a Diverse Range of Aromatic and Heteroaromatic Compounds, Asian J Org Chem, 7, 2018, 985-1005.
  • J. Xue, E. Gao, X.N. Wang, J. Chang, Metal-Free Formal Inverse-Electron-Demand Diels–Alder Reaction of 1,2-Diazines with Ynamides, Org Lett, 20, 2018, 6055-6058.
  • D. Gonzaga, M.R. Senger, F.D.C. Da Silva, V.F. Ferreira, F.P. Silva, 1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: Design, synthesis and inhibitory effect on alpha-glycosidases, Eur J Med Chem, 74, 2014, 461-476.
  • P. Sambasiva Rao, C. Kurumurthy, B. Veeraswamy, G. Santhosh Kumar, Y. Poornachandra, C. Ganesh Kumar, S.B. Vasamsetti, S. Kotamraju, B. Narsaiah, Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity, Eur J Med Chem, 80, 2014, 184-191.
  • S.B. Ferreira, M.S. Costa, N. Boechat, J.S.R. Bezerra, M.S. Genestra, M.M. Canto-Cavalheiro, W.B. Kover, V.F. Ferreira, Synthesis and evaluation of new difluoromethyl azoles as antileishmanial agents, Eur J Med Chem, 42, 2007, 1388-1395.
  • Z.Y. Sheng, T.X.Y. Tang, M. Shi, Unprecedented synthesis of aza-bridged benzodioxepine derivatives through a tandem Rh(ii)-catalyzed 1,3-rearrangement/[3+2] cycloaddition of carbonyltriazoles, Chem Commun, 50, 2014, 15971-15974.
  • M.S. Costa, N. Boechat, E.A. Rangel, F.C. Silva, A.M.T. Souza, C.R. Rodrigues, H.C. Castro, I.N. Junior, M.C.S. Lourenço, S.M.S.V. Wardell, V.F. Ferreira, Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives, Med Chem, 14, 2006, 8644-8653.
  • M.M. Pisal, R.A. Annadate, M.C. Athalye, D. Kumar, S.P. Chavan, D. Sarkar, H.B. Borate, Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines, Bioorg Med Chem Lett, 27, 2017, 979-988.
  • H. Hagiwara, R. Minoura, S. Okada, Y. Sunatsuki, Synthesis, Structure, and Magnetic Property of a New Mononuclear Iron(II) Spin Crossover Complex with a Tripodal Ligand Containing Three 1,2,3-Triazole Groups, Chem Lett, 43, 2014, 950-952.
  • H. Hagiwara, S. Okada, A polymorphism-dependent T1/2 shift of 100 K in a hysteretic spin-crossover complex related to differences in intermolecular weak CH⋯X hydrogen bonds (X = S vs. S and N), Chem Commun, 52, 2016, 815-818.
  • H. Hagiwara, T. Tanaka, S. Hora, Synthesis, structure, and spin crossover above room temperature of a mononuclear and related dinuclear double helicate iron(ii) complexes, Dalton Trans, 45, 2016, 17132-17140.
  • H.S. Armiger, D.B. James, Preparation of Some Organic Diazides, Contribution from the Research Division of Abbott Laboratories, J Org Chem, 9, 1957, 3491-3492.
  • R.H. Hager, E.M. Green, C. Liu, P.S. Jurs, W. Baojie, G.F. Scott, G. Jiri, J.R. Philip, C. Kelly, Synthesis, antimalarial and antitubercular activity of acetylenic chalcones, Bioorg Med Chem Lett, 20, 2010, 942-944.
  • M. Cuendet, K. Hostettmann, O. Potterat, W. Dyatmiko, Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei, Helv Chim Acta, 80, 1997, 1144-1152.
  • I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal Biochem, 239, 1996, 70-76.

Sülfonil-1H-1,2,3-triazollerin sentezi, karakterizasyonu ve antioksidan aktivitesi

Year 2025, Volume: 7 Issue: 2, 176 - 181, 31.05.2025
https://doi.org/10.51435/turkjac.1665889

Abstract

3-methoxy-4-((1-tosyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (3), 4-((1-(ethylsulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (6), 4-((1-((4-chloro phenyl) sulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (9), 4-((4-((1-(ethylsulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzylidene) amino)phenol (7), 4-((4-((1-((4-chlorophenyl) sulfonyl)-1H-1,2,3-triazol-4-yl) methoxy) benzylidene) amino) phenol (10), 4-((4-((1-tosyl-1H-1,2,3-triazol-4-yl) methoxy) benzylidene)amino) phenol (12) were synthesized. The compounds were characterized by FTIR, 1H-NMR and 13C-NMR spectroscopic methods. The antioxidant properties of the compounds were evaluated using two widely accepted methodologies assays (DPPH and FRAP). Compounds 7 and 10 emerged as the most potent antioxidant candidates, displaying the strongest effects in both assays.

References

  • M. Feng, B. Tang, S.H. Liang, X. Jiang, Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry, Curr Top Med Chem, 16, 2016, 1200-1216.
  • P. Devendar, G.F. Yang, Sulfur-Containing Agrochemicals, Curr Top Med Chem, 82, 2017, 375-382.
  • S. Maker, T. Saha, S.K. Singh, Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective, Eur J Med Chem, 161, 2019, 252-276.
  • R.S. Burden, M.S. Kemp, (−)-7-Hydroxycalamenene, A Phytoalexin From Tilia europaea, Phytochemistry, 22, 1983, 1039-1040.
  • S. Rohrbach, A.J. Smith, J.H. Pang, D.L. Poole, T. Tuttle, S. Chiba, J.A. Murphy, Concerted Nucleophilic Aromatic Substitution Reactions, Angew Chem Int Ed, 58, 2019, 16368-16388.
  • V. Palani, M.A. Perea, R. Sarpong, Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups, Chem Rev, 122, 2022, 10126-10169.
  • B. Swami, D. Yadav, R.S. Menon, Benzannulation and N-Annulation of β-Ketoenamines for Synthesizing Aniline and Pyridine Derivatives Using DMSO as a Methine Source, Chem Rec, 22, 2022, 3736-3742.
  • T. Bera, K. Pandey, R. Ali, The Dötz Benzannulation Reaction: A Booming Methodology for Natural Product Synthesis, Chem Select, 5, 2020, 5239-5267.
  • S.J. Hein, D. Lehnherr, H. Arslan, F.J. Uribe-Romo, W.R. Dichtel, Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures, Acc Chem Res, 50, 2017, 2776-2788.
  • L.J. Wu, L.F. Yang, J.H. Li, Q.A. Wang, Dicarbonylative benzannulation of 3-acetoxy-1,4-enynes with CO and silylboranes by Pd and Cu cooperative catalysis: one-step access to 3-hydroxyarylacylsilanes, Chem Commun, 56, 2020, 1669-1672.
  • T.N. Poudel, R.J.I. Tamargo, H. Cai, Y.R. Lee, Recent Progress in Transition-Metal-Free, Base-Mediated Benzannulation Reactions for the Synthesis of a Diverse Range of Aromatic and Heteroaromatic Compounds, Asian J Org Chem, 7, 2018, 985-1005.
  • J. Xue, E. Gao, X.N. Wang, J. Chang, Metal-Free Formal Inverse-Electron-Demand Diels–Alder Reaction of 1,2-Diazines with Ynamides, Org Lett, 20, 2018, 6055-6058.
  • D. Gonzaga, M.R. Senger, F.D.C. Da Silva, V.F. Ferreira, F.P. Silva, 1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: Design, synthesis and inhibitory effect on alpha-glycosidases, Eur J Med Chem, 74, 2014, 461-476.
  • P. Sambasiva Rao, C. Kurumurthy, B. Veeraswamy, G. Santhosh Kumar, Y. Poornachandra, C. Ganesh Kumar, S.B. Vasamsetti, S. Kotamraju, B. Narsaiah, Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity, Eur J Med Chem, 80, 2014, 184-191.
  • S.B. Ferreira, M.S. Costa, N. Boechat, J.S.R. Bezerra, M.S. Genestra, M.M. Canto-Cavalheiro, W.B. Kover, V.F. Ferreira, Synthesis and evaluation of new difluoromethyl azoles as antileishmanial agents, Eur J Med Chem, 42, 2007, 1388-1395.
  • Z.Y. Sheng, T.X.Y. Tang, M. Shi, Unprecedented synthesis of aza-bridged benzodioxepine derivatives through a tandem Rh(ii)-catalyzed 1,3-rearrangement/[3+2] cycloaddition of carbonyltriazoles, Chem Commun, 50, 2014, 15971-15974.
  • M.S. Costa, N. Boechat, E.A. Rangel, F.C. Silva, A.M.T. Souza, C.R. Rodrigues, H.C. Castro, I.N. Junior, M.C.S. Lourenço, S.M.S.V. Wardell, V.F. Ferreira, Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives, Med Chem, 14, 2006, 8644-8653.
  • M.M. Pisal, R.A. Annadate, M.C. Athalye, D. Kumar, S.P. Chavan, D. Sarkar, H.B. Borate, Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines, Bioorg Med Chem Lett, 27, 2017, 979-988.
  • H. Hagiwara, R. Minoura, S. Okada, Y. Sunatsuki, Synthesis, Structure, and Magnetic Property of a New Mononuclear Iron(II) Spin Crossover Complex with a Tripodal Ligand Containing Three 1,2,3-Triazole Groups, Chem Lett, 43, 2014, 950-952.
  • H. Hagiwara, S. Okada, A polymorphism-dependent T1/2 shift of 100 K in a hysteretic spin-crossover complex related to differences in intermolecular weak CH⋯X hydrogen bonds (X = S vs. S and N), Chem Commun, 52, 2016, 815-818.
  • H. Hagiwara, T. Tanaka, S. Hora, Synthesis, structure, and spin crossover above room temperature of a mononuclear and related dinuclear double helicate iron(ii) complexes, Dalton Trans, 45, 2016, 17132-17140.
  • H.S. Armiger, D.B. James, Preparation of Some Organic Diazides, Contribution from the Research Division of Abbott Laboratories, J Org Chem, 9, 1957, 3491-3492.
  • R.H. Hager, E.M. Green, C. Liu, P.S. Jurs, W. Baojie, G.F. Scott, G. Jiri, J.R. Philip, C. Kelly, Synthesis, antimalarial and antitubercular activity of acetylenic chalcones, Bioorg Med Chem Lett, 20, 2010, 942-944.
  • M. Cuendet, K. Hostettmann, O. Potterat, W. Dyatmiko, Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei, Helv Chim Acta, 80, 1997, 1144-1152.
  • I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal Biochem, 239, 1996, 70-76.
There are 25 citations in total.

Details

Primary Language English
Subjects Biologically Active Molecules
Journal Section Research Articles
Authors

Fatih Çelik 0000-0001-5510-3494

Publication Date May 31, 2025
Submission Date March 26, 2025
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Çelik, F. (2025). Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles. Turkish Journal of Analytical Chemistry, 7(2), 176-181. https://doi.org/10.51435/turkjac.1665889
AMA Çelik F. Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles. TurkJAC. May 2025;7(2):176-181. doi:10.51435/turkjac.1665889
Chicago Çelik, Fatih. “Synthesis, Characterization and Antioxidant Activity of Sulfonyl-1H-1,2,3-Triazoles”. Turkish Journal of Analytical Chemistry 7, no. 2 (May 2025): 176-81. https://doi.org/10.51435/turkjac.1665889.
EndNote Çelik F (May 1, 2025) Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles. Turkish Journal of Analytical Chemistry 7 2 176–181.
IEEE F. Çelik, “Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles”, TurkJAC, vol. 7, no. 2, pp. 176–181, 2025, doi: 10.51435/turkjac.1665889.
ISNAD Çelik, Fatih. “Synthesis, Characterization and Antioxidant Activity of Sulfonyl-1H-1,2,3-Triazoles”. Turkish Journal of Analytical Chemistry 7/2 (May2025), 176-181. https://doi.org/10.51435/turkjac.1665889.
JAMA Çelik F. Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles. TurkJAC. 2025;7:176–181.
MLA Çelik, Fatih. “Synthesis, Characterization and Antioxidant Activity of Sulfonyl-1H-1,2,3-Triazoles”. Turkish Journal of Analytical Chemistry, vol. 7, no. 2, 2025, pp. 176-81, doi:10.51435/turkjac.1665889.
Vancouver Çelik F. Synthesis, characterization and antioxidant activity of sulfonyl-1H-1,2,3-triazoles. TurkJAC. 2025;7(2):176-81.