Research Article
BibTex RIS Cite

Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups

Year 2020, , 69 - 74, 29.12.2020
https://doi.org/10.51435/turkjac.806398

Abstract

This work presents the synthesis of four phthalonitrile compunds (3a-d) bearing chalcone moiety which have biological activities. Phthalonitrile compounds are considerable pioneer in synthesis of novel photoactive phthalocyanine derivatives. The spectroscopic properties (IR, 1H NMR, 13C NMR and mass) and antioxidant activity of the novel (3a and 3b) or previously synthesized (3c and 3d) phthalonitrile compounds were studied. According to the DPPH value, antioxidant activitiy of compound 3b was significantly higher than the counterparts.

References

  • [1] P.M. Anbarasan, P.S. Kumar, K. Vasudevan, S.M. Babu, V. Aroulmoji, DFT and TD-DFT Calculations of Some Metal Free Phthalonitrile Derivatives for Enhancement of the Dye Sensitized Solar Cells, Acta Phys. Pol. A., 119, 2011, 395.
  • [2] M. Koenig, G. Bottari, G. Brancato, V. Barone, D.M. Guldi, T. Torres, Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods, Chem. Sci., 6, 2013, 2502.
  • [3] M. Okutan, F. Yakuphanoglu, O. Köysal, M. Durmus¸ V. Ahsen, Dielectric spectroscopy analysis in employing liquid crystal phthalonitrile derivative in nematic liquid crystals, Spectrochim. Acta A., 67, 2007, 531-535.
  • [4] S.B. Sastri, J.P. Armistead, T.M. Keller, Phthalonitrile-carbon fiber composites, Polym Compos., 17, 1996, 816-822.
  • [5] T.M. Keller, C.M. Roland. High temperature adhesive, US Patent, 5, 1993, 242-755.
  • [6] T.M. Keller, High-performance, electrically conductive polymersl, Chemtech., 18, 1988, 635.
  • [7] L.K. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, CRC Press, Boston, 5, 2009, 71-92.
  • [8] X.Y. Yu, K. Naito, C. Kang, X.W. Qu, Q.X. Zhang, Synthesis and Properties of a High-Temperature Naphthyl-Based Phthalonitrile Polymer, Macromol. Chem. Phys., 214, 2013, 361-369.
  • [9] A. Aktas Kamiloglu, D. Akyüz, A. Koca, I. Acar, Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl)benzyl]oxy}phenyl)propan-1-ol and its metallo compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92, 2018, 223-235.
  • [10] H. Kantekin, G. Sarkı, A. Koca, A. Aktas, R.Z. Uslu Kobak, M.B. Sağlam, Synthesis, structural characterizations, and electrochemical and spectroelectrochemical properties of novel peripherally octa-substituted metallophthalocyanines, Journal of Organometallic Chemistry, 789, 2015, 53-62.
  • [11] R.D. George, A.W. Snow, Synthesis of 3-nitrophthalonitrile and tetra-α-substituted phthalocyanines, J. Heterocycl. Chem., 32, 1995, 495.
  • [12] D.S. Terekhov, K.J.M. Nolan, C.R. McArthur, C.C. Leznoff, Synthesis of 2,3,9,10,16,17,23,24-Octaalkynylphthalocyanines and the Effects of Concentration and Temperature on Their 1H NMR Spectra, J. Org. Chem., 61, 1996, 3034-3040.
  • [13] C.C. Leznoff, D.S. Terekhov, C.R. McArthur, S. Vigh, J. Li, Multisubstituted phthalonitriles, naphthalenedicarbonitriles, and phenanthrenetetracarbonitriles as precursors for phthalocyanine syntheses, Can.J. Chem., 73, 1995, 435-443.
  • [14] Y. Zorlu, I. Ün, C. Hirel, F. Dumoulin, V. Ahsen, Phthalonitriles Functionalized for Click Chemistry. Design, Synthesis and Structural Characterization, J. Chem. Cryst., 43, 2013, 636.
  • [15] F. Yuksel, A.G. Gürek, C. Lebrun, V. Ahsen, Synthesis and solvent effects on the spectroscopic properties of octatosylamido phthalocyanines, New. J. Chem., 29, 2005, 726-732.
  • [16] V.L.C. Bagdassarian, K.S. Bagdassarian, M.S. Atanassova, Phenolic profile, antioxidant and antimicrobial activities from the apiaceae family (dry seeds), Mintage J Pharm Med Sci., 2(4), 2013, 26-31.
  • [17] M.L. Go, X. Wu, X.L. Liu, Chalcones: an update on cytotoxic and chemoprotective properties, Curr Med Chem., 12(4), 2005, 481-99.
  • [18] B.A. Bhat, K.L. Dhar, S.C. Puri, A.K. Saxena, M .Shanmugavel, G.N. Qazi, Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents, Bioorg Med Chem Lett., 15, 2005, 3177-3180.
  • [19] A. Jurasek, V. Knoppava, M. Dandarova, J. Kovac, L. Reinprecht, Furan derivatives III: Synthesis and properties of β-Ketosulfides and sülfür derivatives of chalcones of 5-Nitrofuran series, Tetrahedron, 34, 1978, 1833-1836.
  • [20] J.C. Trivedi, J.B. Bariwal, K.D. Upadhyay, Y.T. Naliapara, S.K. Joshi, C.C. Pannecouque, E.D. Clercq, A.K. Shah, Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity, Tetrahedron Lett., 48, 2007, 8472-8474.
  • [21] R. Li, G.L. Kenyon, F.E. Cohen, X. Chen, B. Gong, J.N. Dominguez, E. Davidson, G. Kurzban, R.E. Miller, E.O. Nuzum, P.J. Rosenthal, J.H. McKerrow, In vitro antimalarial activity of chalcones and their derivatives, J Med Chem., 38(26) 1995, 5031-5037.
  • [22] N. Yayli, O. Üçüncü, E. Aydìn, Y. Gök, A. Yasar, C.N. Baltacì Yìldìrìm, M. Küçük, Stereoselective photochemistry of heteroaryl chalcones in solution and the antioxidant activities, J.Photochem Photobiol A: Chem., 169, 2005, 229-234.
  • [23] S. Khatib, O. Narya, R. Musa, M. Shmuel, S. Tamir, J. Vaya, Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety, Bioorg. Med. Chem., 13, 2005, 433-441.
  • [24] J.N. Domínguez, C. León, J. Rodrigues, N.G. de Domínguez, J. Gut, J. Philip, P.J. Rosenthal, Synthesis and antimalarial activity of sulfonamide chalcone derivatives, Farmaco., 60, 2005, 307-311.
  • [25] L.F. Motta, A.C. Gaudio, Y. Takahata, Quantitati ve Structure–Activity Relationships of a Series of Chalcone Derivatives (1,3–Diphenyl–2–propen–1–one) as Anti Plasmodium falciparum Agents (Anti Malaria Agents), Internet Electronic J Mol Des., 5, 2006, 555-569.
  • [26] S.K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L.C. Mishra, V.K. Bhasin, Potent Antimalarial Activity of Newly Synthesized Substituted Chalcone Analogs in Vitro, Med Chem Res., 18, 2009, 407-420.
  • [27] S. Çolak, S. Kahraman, S.Z. Yıldız, Synthesis, characterization, solution and antioxidant properties of novel tetrakis{4-[N-((3-dimethylamino)propyl)amide]phenoxy}nickel (II) phthalocyanine and its water soluble derivatives, Journal of Organometallic Chemistry, 823, 2016, 83-89.
  • [28] B.C. Behera, N. Verma, A. Sonone, U. Makhija, Determination of antioxidative potential of lichen Usnea ghattensis in vitro, LWT Food Sci. Technol., 39, 2006, 80-85.
  • [29] R.S. Kumar, B. Rajkapoor, P. Perumal, Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models, Asian Pac. J. Trop. Biomed., 2 (4), 2012, 256-261.
  • [30] N. Erkan, H. Cetin, E. Ayranci, Antioxidant activities of Sideritis congesta Davis et Huber-Morath and Sideritis arguta Boiss et Heldr: Identification of free flavonoids and cinnamic acid derivatives, Food Res. Int., 44, 2011, 297-303.
  • [31] B.M. Mistry, R.V. Patel, Y. Keum, D.H. Kim, Chrysin-benzothiazole conjugates as antioxidant and anticancer agents, Bioorg. Med. Chem. Lett., 25, 2015, 5561-5565.
  • [32] A. Aktas Kamiloglu, H. Karaca, G. Celik, I. Acar, H. Kantekin, New chalcone-substituted metallophthalocyanines: Synthesis, characterization, and investigation of their properties, Journal of Chemical Research, 44(7-8), 2020, 367-375.
  • [33] S. Syam, S.I. Abdelwahab, M.A. Al-Mamary, S. Mohan, Synthesis of Chalcones with Anticancer Activities, Molecules, 17, 2012, 6179-6195.
Year 2020, , 69 - 74, 29.12.2020
https://doi.org/10.51435/turkjac.806398

Abstract

References

  • [1] P.M. Anbarasan, P.S. Kumar, K. Vasudevan, S.M. Babu, V. Aroulmoji, DFT and TD-DFT Calculations of Some Metal Free Phthalonitrile Derivatives for Enhancement of the Dye Sensitized Solar Cells, Acta Phys. Pol. A., 119, 2011, 395.
  • [2] M. Koenig, G. Bottari, G. Brancato, V. Barone, D.M. Guldi, T. Torres, Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods, Chem. Sci., 6, 2013, 2502.
  • [3] M. Okutan, F. Yakuphanoglu, O. Köysal, M. Durmus¸ V. Ahsen, Dielectric spectroscopy analysis in employing liquid crystal phthalonitrile derivative in nematic liquid crystals, Spectrochim. Acta A., 67, 2007, 531-535.
  • [4] S.B. Sastri, J.P. Armistead, T.M. Keller, Phthalonitrile-carbon fiber composites, Polym Compos., 17, 1996, 816-822.
  • [5] T.M. Keller, C.M. Roland. High temperature adhesive, US Patent, 5, 1993, 242-755.
  • [6] T.M. Keller, High-performance, electrically conductive polymersl, Chemtech., 18, 1988, 635.
  • [7] L.K. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, CRC Press, Boston, 5, 2009, 71-92.
  • [8] X.Y. Yu, K. Naito, C. Kang, X.W. Qu, Q.X. Zhang, Synthesis and Properties of a High-Temperature Naphthyl-Based Phthalonitrile Polymer, Macromol. Chem. Phys., 214, 2013, 361-369.
  • [9] A. Aktas Kamiloglu, D. Akyüz, A. Koca, I. Acar, Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl)benzyl]oxy}phenyl)propan-1-ol and its metallo compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92, 2018, 223-235.
  • [10] H. Kantekin, G. Sarkı, A. Koca, A. Aktas, R.Z. Uslu Kobak, M.B. Sağlam, Synthesis, structural characterizations, and electrochemical and spectroelectrochemical properties of novel peripherally octa-substituted metallophthalocyanines, Journal of Organometallic Chemistry, 789, 2015, 53-62.
  • [11] R.D. George, A.W. Snow, Synthesis of 3-nitrophthalonitrile and tetra-α-substituted phthalocyanines, J. Heterocycl. Chem., 32, 1995, 495.
  • [12] D.S. Terekhov, K.J.M. Nolan, C.R. McArthur, C.C. Leznoff, Synthesis of 2,3,9,10,16,17,23,24-Octaalkynylphthalocyanines and the Effects of Concentration and Temperature on Their 1H NMR Spectra, J. Org. Chem., 61, 1996, 3034-3040.
  • [13] C.C. Leznoff, D.S. Terekhov, C.R. McArthur, S. Vigh, J. Li, Multisubstituted phthalonitriles, naphthalenedicarbonitriles, and phenanthrenetetracarbonitriles as precursors for phthalocyanine syntheses, Can.J. Chem., 73, 1995, 435-443.
  • [14] Y. Zorlu, I. Ün, C. Hirel, F. Dumoulin, V. Ahsen, Phthalonitriles Functionalized for Click Chemistry. Design, Synthesis and Structural Characterization, J. Chem. Cryst., 43, 2013, 636.
  • [15] F. Yuksel, A.G. Gürek, C. Lebrun, V. Ahsen, Synthesis and solvent effects on the spectroscopic properties of octatosylamido phthalocyanines, New. J. Chem., 29, 2005, 726-732.
  • [16] V.L.C. Bagdassarian, K.S. Bagdassarian, M.S. Atanassova, Phenolic profile, antioxidant and antimicrobial activities from the apiaceae family (dry seeds), Mintage J Pharm Med Sci., 2(4), 2013, 26-31.
  • [17] M.L. Go, X. Wu, X.L. Liu, Chalcones: an update on cytotoxic and chemoprotective properties, Curr Med Chem., 12(4), 2005, 481-99.
  • [18] B.A. Bhat, K.L. Dhar, S.C. Puri, A.K. Saxena, M .Shanmugavel, G.N. Qazi, Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents, Bioorg Med Chem Lett., 15, 2005, 3177-3180.
  • [19] A. Jurasek, V. Knoppava, M. Dandarova, J. Kovac, L. Reinprecht, Furan derivatives III: Synthesis and properties of β-Ketosulfides and sülfür derivatives of chalcones of 5-Nitrofuran series, Tetrahedron, 34, 1978, 1833-1836.
  • [20] J.C. Trivedi, J.B. Bariwal, K.D. Upadhyay, Y.T. Naliapara, S.K. Joshi, C.C. Pannecouque, E.D. Clercq, A.K. Shah, Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity, Tetrahedron Lett., 48, 2007, 8472-8474.
  • [21] R. Li, G.L. Kenyon, F.E. Cohen, X. Chen, B. Gong, J.N. Dominguez, E. Davidson, G. Kurzban, R.E. Miller, E.O. Nuzum, P.J. Rosenthal, J.H. McKerrow, In vitro antimalarial activity of chalcones and their derivatives, J Med Chem., 38(26) 1995, 5031-5037.
  • [22] N. Yayli, O. Üçüncü, E. Aydìn, Y. Gök, A. Yasar, C.N. Baltacì Yìldìrìm, M. Küçük, Stereoselective photochemistry of heteroaryl chalcones in solution and the antioxidant activities, J.Photochem Photobiol A: Chem., 169, 2005, 229-234.
  • [23] S. Khatib, O. Narya, R. Musa, M. Shmuel, S. Tamir, J. Vaya, Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety, Bioorg. Med. Chem., 13, 2005, 433-441.
  • [24] J.N. Domínguez, C. León, J. Rodrigues, N.G. de Domínguez, J. Gut, J. Philip, P.J. Rosenthal, Synthesis and antimalarial activity of sulfonamide chalcone derivatives, Farmaco., 60, 2005, 307-311.
  • [25] L.F. Motta, A.C. Gaudio, Y. Takahata, Quantitati ve Structure–Activity Relationships of a Series of Chalcone Derivatives (1,3–Diphenyl–2–propen–1–one) as Anti Plasmodium falciparum Agents (Anti Malaria Agents), Internet Electronic J Mol Des., 5, 2006, 555-569.
  • [26] S.K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L.C. Mishra, V.K. Bhasin, Potent Antimalarial Activity of Newly Synthesized Substituted Chalcone Analogs in Vitro, Med Chem Res., 18, 2009, 407-420.
  • [27] S. Çolak, S. Kahraman, S.Z. Yıldız, Synthesis, characterization, solution and antioxidant properties of novel tetrakis{4-[N-((3-dimethylamino)propyl)amide]phenoxy}nickel (II) phthalocyanine and its water soluble derivatives, Journal of Organometallic Chemistry, 823, 2016, 83-89.
  • [28] B.C. Behera, N. Verma, A. Sonone, U. Makhija, Determination of antioxidative potential of lichen Usnea ghattensis in vitro, LWT Food Sci. Technol., 39, 2006, 80-85.
  • [29] R.S. Kumar, B. Rajkapoor, P. Perumal, Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models, Asian Pac. J. Trop. Biomed., 2 (4), 2012, 256-261.
  • [30] N. Erkan, H. Cetin, E. Ayranci, Antioxidant activities of Sideritis congesta Davis et Huber-Morath and Sideritis arguta Boiss et Heldr: Identification of free flavonoids and cinnamic acid derivatives, Food Res. Int., 44, 2011, 297-303.
  • [31] B.M. Mistry, R.V. Patel, Y. Keum, D.H. Kim, Chrysin-benzothiazole conjugates as antioxidant and anticancer agents, Bioorg. Med. Chem. Lett., 25, 2015, 5561-5565.
  • [32] A. Aktas Kamiloglu, H. Karaca, G. Celik, I. Acar, H. Kantekin, New chalcone-substituted metallophthalocyanines: Synthesis, characterization, and investigation of their properties, Journal of Chemical Research, 44(7-8), 2020, 367-375.
  • [33] S. Syam, S.I. Abdelwahab, M.A. Al-Mamary, S. Mohan, Synthesis of Chalcones with Anticancer Activities, Molecules, 17, 2012, 6179-6195.
There are 33 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Ayşe Aktaş Kamiloğlu 0000-0002-7347-4018

Zehra Can 0000-0002-7156-4941

Gonca Çelik 0000-0002-4634-3354

Publication Date December 29, 2020
Submission Date October 6, 2020
Acceptance Date November 2, 2020
Published in Issue Year 2020

Cite

APA Aktaş Kamiloğlu, A., Can, Z., & Çelik, G. (2020). Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups. Turkish Journal of Analytical Chemistry, 2(2), 69-74. https://doi.org/10.51435/turkjac.806398
AMA Aktaş Kamiloğlu A, Can Z, Çelik G. Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups. TurkJAC. December 2020;2(2):69-74. doi:10.51435/turkjac.806398
Chicago Aktaş Kamiloğlu, Ayşe, Zehra Can, and Gonca Çelik. “Antioxidant Activity of Phthalonitrile Derivatives Bearing Different Chalcone Groups”. Turkish Journal of Analytical Chemistry 2, no. 2 (December 2020): 69-74. https://doi.org/10.51435/turkjac.806398.
EndNote Aktaş Kamiloğlu A, Can Z, Çelik G (December 1, 2020) Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups. Turkish Journal of Analytical Chemistry 2 2 69–74.
IEEE A. Aktaş Kamiloğlu, Z. Can, and G. Çelik, “Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups”, TurkJAC, vol. 2, no. 2, pp. 69–74, 2020, doi: 10.51435/turkjac.806398.
ISNAD Aktaş Kamiloğlu, Ayşe et al. “Antioxidant Activity of Phthalonitrile Derivatives Bearing Different Chalcone Groups”. Turkish Journal of Analytical Chemistry 2/2 (December 2020), 69-74. https://doi.org/10.51435/turkjac.806398.
JAMA Aktaş Kamiloğlu A, Can Z, Çelik G. Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups. TurkJAC. 2020;2:69–74.
MLA Aktaş Kamiloğlu, Ayşe et al. “Antioxidant Activity of Phthalonitrile Derivatives Bearing Different Chalcone Groups”. Turkish Journal of Analytical Chemistry, vol. 2, no. 2, 2020, pp. 69-74, doi:10.51435/turkjac.806398.
Vancouver Aktaş Kamiloğlu A, Can Z, Çelik G. Antioxidant activity of phthalonitrile derivatives bearing different chalcone groups. TurkJAC. 2020;2(2):69-74.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/