Research Article
BibTex RIS Cite
Year 2020, Volume: 2 Issue: 1, 22 - 28, 23.06.2020

Abstract

References

  • [1] Kang, J.W. 2014. “Removing environmental organic pollutants with bioremediation and phytoremediation”, Biotechnol. Lett. 36, 1129-1139.
  • [2] Xie, H., Xiong, X. 2017. “A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red”, J. Environ. Chem. Eng. 5(1), 1150-1158.
  • [3] Venkatesh, S., Quaff, A.R., Pandey, N.D., Venkatesh, K. 2016. “Decolorization and mineralization of C.I. direct red 28 azo dye by ozonation”, Desalin. Water Treat. 57(9), 4135-4145.
  • [4] Bessegato, G.G., Souza, J.C., Cardoso, J.C., Zanoni, M.V.B. 2018. “Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater”, J. Environ. Chem. Eng. 6(2), 2794-2802.
  • [5] Satılmış, B., Uyar, T. 2018. “Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system”, Appl. Surf. Sci. 453, 220-229.
  • [6] Gül, U.D., Silah, H. 2014. “Comparison of color removal from reactive dye contaminated water by systems containing fungal biosorbent, active carbon and their mixture”, Water Sci. Technol. 70(7), 1168-1174.
  • [7] Nikooe, N., Saljoughi, E. 2017. “Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution”, Appl. Surf. Sci. 413, 41-49.
  • [8] Chenna, M., Chemlal, R., Drouiche, N., Messaoudi, K., Lounici, H. 2016. “Effectiveness of a physicochemical coagulation/flocculation process for the pretreatment of polluted water containing Hydron Blue Dye”. Desalin. Water Treat. 57, 27003-27014.
  • [9] Chukki, J., Shanthakumar, S. 2016. “Optimization of malachite green dye removal by Chrysanthemum Indicum using response surface methodology”, Environ. Prog. Sustain. 35(5), 1415-1419.
  • [10] Wawrzkiewicz, M., Hubicki, Z., Polska-Adach, E. 2018. “Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal wastewaters”, Sep. Sci. Technol. 53(7), 1065-1075.
  • [11] Reza, K.M., Kurny, A.S.W., Gulshan, F. 2017. “Parameters affecting the photocatalytic degradation of dyes using TiO2: a review”, Appl. Water Sci. 7(4), 1569-1578.
  • [12] Mahmoodi, N.M., Mokhtari-Shourijeh, Z., Abdi, J. 2018. “Preparation of mesoporous polyvinyl alcohol/chitosan/silica composite nanofiber and dye removal from wastewater”, Environ. Prog. Sustain. 38, S100-S109. [13] Kyzas, G.Z., Kostoglu, M. 2014. “Green adsorbents for wastewaters: A critical review”, Materials 7(1), 333-364.
  • [14] Mitrovic, J.Z., Radovic, M.D., Andelkovic, T.D., Bojic, D.V., Bojic, A.L.J. 2014. “Identification of intermediates and ecotoxicity assessment during the UV/H2O2 oxidation of azo dye Reactive Orange 16”, J. Environ. Sci. Heal. A 49(5), 491-502.
  • [15] Mishra, S., Maiti, A. 2019. “Process optimization for effective bio-decolourization of reactive orange 16 using chemometric methods”, J. Environ. Sci. Heal. A 54(3), 179-192.
  • [16] Guimarães, D., Leão, V.A. 2014. “Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21”, J. Hazard. Mater. 280, 209-215.
  • [17] Hubicki, Z., Wolowicz, A. 2009. “Adsorption of palladium (II) from chloride solutions on Amberlyst A 29 and Amberlyst A 21 resins”, Hydrometallurgy 96(1-2), 159-165.
  • [18] Han, B., Carvalho, W., Canilha, L., da Silva, S.S., e Silva, J.B.A., McMillan, J.D., Wickramasinghe, S.R. 2006. “Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates”, Desalination 193(1-3), 361-366.
  • [19] Sarı, S.K., Özmen, D. 2018. “Design of optimum response surface experiments for the adsorption of acetic, butryic, and oxalic acids on Amberlyst A21”, J. Disper Sci. Technol. 39(2), 305-309.
  • [20] Karekar, J.M., Divekar, S.V. 2017. “Adsorption studies of chromium (VI) on weak base resins Tulsion A-10X (MP) and Amberlyst A-21 (MP) in aqueous and mixed media”, Desalin. Water Treat. 82, 252-261.
  • [21] Nagireddi, S., Golder, A.K., Uppaluri, R. 2018. “Role of protonation and functional groups in Pd(II) recovery and reuse characteristics of commercial anion exchange resin-synthetic electroless plating solution systems”, J. Water Process. Eng. 22, 227-238.
  • [22] Sathishkumar, P., Arulkumar, M., Palvannan, T. 2012. “Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR)”, J. Clean Prod. 22(1), 67-75.
  • [23] Kallel, F., Chaari, F., Bouaziz, F., Bettaieb, F., Ghorbel, R., Chaabouni, S.E. 2016. “Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product”, J. Mol. Liq. 219, 279-288.
  • [24] Janaki, V., Vijayaraghavan, K., Ramasamy, A.K., Lee, K.J., Oh, B.T. Kamala-Kannan, S. 2012. “Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite-A novel eco-friendly polymer”, J. Hazard. Mater. 241-242, 110-117.
  • [25] Zhu, H., Chen, T., Liu, J., Li, D. 2018. “Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers”, RSC Adv. 8(5), 2616-2621.
  • [26] Langmuir, I. 1918. “Adsorption of gases on plane surfaces of glass mica and platinum”, J. Am. Chem. Soc. 40(9), 1361–1403.
  • [27] Mishra, S.R., Chandra, R., Kaila, J., Darshi, S. 2017. “Kinetics and isotherm studies for the adsorption of metal ions onto two soil types”, Environ. Technol. Inno. 7, 87-101.
  • [28] Freundlich, H.M.F. 1906. “Over the adsorption in solution”, Phys. Chem. 57, 385–470.
  • [29] Dadfarnia, S., Shabani, A.M.H., Moradi, S.E., Emami, S. 2015. “Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent”, Appl. Surf. Sci. 330, 85-93.
  • [30] Ho, Y.S., Mckay, G. 1999. “Pseudo-second order model for sorption processes”, Process Biochem. 34(5), 451-465.

Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies

Year 2020, Volume: 2 Issue: 1, 22 - 28, 23.06.2020

Abstract

A macroporous polystyrene resin called Amberlyst A21 was used as an adsorbent for Reactive Orange 16. The effects of experimental parameters such as solution pH, initial dye concentration, contact time and adsorbent dosage on the adsorption of Reactive Orange 16 were studied using by batch adsorption technique. The optimum conditions were; solution pH 2, the contact time of 180 min and adsorbent dosage of 1.0 g/L at 25 ˚C. Structural properties of Amberlyst A21 were analyzed by FTIR and SEM techniques. The adsorption equilibrium modeling of Reactive Orange 16 was described as monolayer adsorption and fitted well with Langmuir isotherm model rather than Freundlich and Temkin isotherm models. The experimental data showed that the adsorption kinetics followed pseudo-first order kinetic model. Amberlyst A21 as an adsorbent is promising for dye removal from wastewater.

References

  • [1] Kang, J.W. 2014. “Removing environmental organic pollutants with bioremediation and phytoremediation”, Biotechnol. Lett. 36, 1129-1139.
  • [2] Xie, H., Xiong, X. 2017. “A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red”, J. Environ. Chem. Eng. 5(1), 1150-1158.
  • [3] Venkatesh, S., Quaff, A.R., Pandey, N.D., Venkatesh, K. 2016. “Decolorization and mineralization of C.I. direct red 28 azo dye by ozonation”, Desalin. Water Treat. 57(9), 4135-4145.
  • [4] Bessegato, G.G., Souza, J.C., Cardoso, J.C., Zanoni, M.V.B. 2018. “Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater”, J. Environ. Chem. Eng. 6(2), 2794-2802.
  • [5] Satılmış, B., Uyar, T. 2018. “Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system”, Appl. Surf. Sci. 453, 220-229.
  • [6] Gül, U.D., Silah, H. 2014. “Comparison of color removal from reactive dye contaminated water by systems containing fungal biosorbent, active carbon and their mixture”, Water Sci. Technol. 70(7), 1168-1174.
  • [7] Nikooe, N., Saljoughi, E. 2017. “Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution”, Appl. Surf. Sci. 413, 41-49.
  • [8] Chenna, M., Chemlal, R., Drouiche, N., Messaoudi, K., Lounici, H. 2016. “Effectiveness of a physicochemical coagulation/flocculation process for the pretreatment of polluted water containing Hydron Blue Dye”. Desalin. Water Treat. 57, 27003-27014.
  • [9] Chukki, J., Shanthakumar, S. 2016. “Optimization of malachite green dye removal by Chrysanthemum Indicum using response surface methodology”, Environ. Prog. Sustain. 35(5), 1415-1419.
  • [10] Wawrzkiewicz, M., Hubicki, Z., Polska-Adach, E. 2018. “Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal wastewaters”, Sep. Sci. Technol. 53(7), 1065-1075.
  • [11] Reza, K.M., Kurny, A.S.W., Gulshan, F. 2017. “Parameters affecting the photocatalytic degradation of dyes using TiO2: a review”, Appl. Water Sci. 7(4), 1569-1578.
  • [12] Mahmoodi, N.M., Mokhtari-Shourijeh, Z., Abdi, J. 2018. “Preparation of mesoporous polyvinyl alcohol/chitosan/silica composite nanofiber and dye removal from wastewater”, Environ. Prog. Sustain. 38, S100-S109. [13] Kyzas, G.Z., Kostoglu, M. 2014. “Green adsorbents for wastewaters: A critical review”, Materials 7(1), 333-364.
  • [14] Mitrovic, J.Z., Radovic, M.D., Andelkovic, T.D., Bojic, D.V., Bojic, A.L.J. 2014. “Identification of intermediates and ecotoxicity assessment during the UV/H2O2 oxidation of azo dye Reactive Orange 16”, J. Environ. Sci. Heal. A 49(5), 491-502.
  • [15] Mishra, S., Maiti, A. 2019. “Process optimization for effective bio-decolourization of reactive orange 16 using chemometric methods”, J. Environ. Sci. Heal. A 54(3), 179-192.
  • [16] Guimarães, D., Leão, V.A. 2014. “Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21”, J. Hazard. Mater. 280, 209-215.
  • [17] Hubicki, Z., Wolowicz, A. 2009. “Adsorption of palladium (II) from chloride solutions on Amberlyst A 29 and Amberlyst A 21 resins”, Hydrometallurgy 96(1-2), 159-165.
  • [18] Han, B., Carvalho, W., Canilha, L., da Silva, S.S., e Silva, J.B.A., McMillan, J.D., Wickramasinghe, S.R. 2006. “Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates”, Desalination 193(1-3), 361-366.
  • [19] Sarı, S.K., Özmen, D. 2018. “Design of optimum response surface experiments for the adsorption of acetic, butryic, and oxalic acids on Amberlyst A21”, J. Disper Sci. Technol. 39(2), 305-309.
  • [20] Karekar, J.M., Divekar, S.V. 2017. “Adsorption studies of chromium (VI) on weak base resins Tulsion A-10X (MP) and Amberlyst A-21 (MP) in aqueous and mixed media”, Desalin. Water Treat. 82, 252-261.
  • [21] Nagireddi, S., Golder, A.K., Uppaluri, R. 2018. “Role of protonation and functional groups in Pd(II) recovery and reuse characteristics of commercial anion exchange resin-synthetic electroless plating solution systems”, J. Water Process. Eng. 22, 227-238.
  • [22] Sathishkumar, P., Arulkumar, M., Palvannan, T. 2012. “Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR)”, J. Clean Prod. 22(1), 67-75.
  • [23] Kallel, F., Chaari, F., Bouaziz, F., Bettaieb, F., Ghorbel, R., Chaabouni, S.E. 2016. “Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product”, J. Mol. Liq. 219, 279-288.
  • [24] Janaki, V., Vijayaraghavan, K., Ramasamy, A.K., Lee, K.J., Oh, B.T. Kamala-Kannan, S. 2012. “Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite-A novel eco-friendly polymer”, J. Hazard. Mater. 241-242, 110-117.
  • [25] Zhu, H., Chen, T., Liu, J., Li, D. 2018. “Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers”, RSC Adv. 8(5), 2616-2621.
  • [26] Langmuir, I. 1918. “Adsorption of gases on plane surfaces of glass mica and platinum”, J. Am. Chem. Soc. 40(9), 1361–1403.
  • [27] Mishra, S.R., Chandra, R., Kaila, J., Darshi, S. 2017. “Kinetics and isotherm studies for the adsorption of metal ions onto two soil types”, Environ. Technol. Inno. 7, 87-101.
  • [28] Freundlich, H.M.F. 1906. “Over the adsorption in solution”, Phys. Chem. 57, 385–470.
  • [29] Dadfarnia, S., Shabani, A.M.H., Moradi, S.E., Emami, S. 2015. “Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent”, Appl. Surf. Sci. 330, 85-93.
  • [30] Ho, Y.S., Mckay, G. 1999. “Pseudo-second order model for sorption processes”, Process Biochem. 34(5), 451-465.
There are 29 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Murat Basar This is me

Hülya Silah

Publication Date June 23, 2020
Submission Date March 30, 2020
Acceptance Date May 19, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Basar, M., & Silah, H. (2020). Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies. Turkish Journal of Analytical Chemistry, 2(1), 22-28.
AMA Basar M, Silah H. Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies. TurkJAC. June 2020;2(1):22-28.
Chicago Basar, Murat, and Hülya Silah. “Adsorption of Reactive Orange 16 by Using a Macroporous Polystyrene Resin: Isotherm and Kinetic Studies”. Turkish Journal of Analytical Chemistry 2, no. 1 (June 2020): 22-28.
EndNote Basar M, Silah H (June 1, 2020) Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies. Turkish Journal of Analytical Chemistry 2 1 22–28.
IEEE M. Basar and H. Silah, “Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies”, TurkJAC, vol. 2, no. 1, pp. 22–28, 2020.
ISNAD Basar, Murat - Silah, Hülya. “Adsorption of Reactive Orange 16 by Using a Macroporous Polystyrene Resin: Isotherm and Kinetic Studies”. Turkish Journal of Analytical Chemistry 2/1 (June 2020), 22-28.
JAMA Basar M, Silah H. Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies. TurkJAC. 2020;2:22–28.
MLA Basar, Murat and Hülya Silah. “Adsorption of Reactive Orange 16 by Using a Macroporous Polystyrene Resin: Isotherm and Kinetic Studies”. Turkish Journal of Analytical Chemistry, vol. 2, no. 1, 2020, pp. 22-28.
Vancouver Basar M, Silah H. Adsorption of Reactive Orange 16 by using a macroporous polystyrene resin: Isotherm and kinetic studies. TurkJAC. 2020;2(1):22-8.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/