Year 2020,
Volume: 2 Issue: 1, 15 - 21, 23.06.2020
Ceren Kuşcu
Volkan Özdokur
,
Süleyman Koçak
Fatma Nil Ertas
References
- [1] Di Chiara, G., Bassareo, V. 2007. ‘Reward system and addiction: what dopamine does and doesn’t do’, Current Opinion in Pharmacology, 7, 69–76.
- [2] Meder, D., Herz, D.M., Rowe, J.B., Lehericy, S., Siebner, H.R. 2019. ‘The role of dopamine in the brain - lessons learned from Parkinson's disease’ NeuroImage, 190, 79–93.
- [3] Bjorklund, A. , Dunnett, S. B. 2007. ‘Dopamine neuron systems in the brain: an update’, Trends in Neurosciences, 30, 194-202.
- [4] Wang, J., Du, R., Liu, W., Yao, L., Ding, F., Zou, P., Wang, Y., Wang, X., Zhao, Q., Rao, H. ‘Colorimetric and fluorometric dual-signal determination of dopamine by the use of Cu-Mn-O microcrystals and C dots’. 2019. Sensors and Actuators B: Chemical, 290, 125-132.
- [5] Naccarato, A., Gionfriddo, E., Sindona, G., Tagaralli, A. 2014. ‘Development of a simple and rapid solid phase microextracion-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine’ Analytica Chimica Acta, 810, 17–24.
- [6] Gottås, A., Ripel, Å., Boix, F., Vindenes, V., Mørland, J., Øiestad, E.L. 2015. ‘Determination of dopamine concentrations in brain extra cellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry’, Journal of Pharmacological and Toxicological Methods, 74, 75-79.
- [7] Oh, M., Huh, E., Oh, M.S., Jeong, J., Hon, S. 2018. ‘Development of a diagnostic method for Parkinson’s disease by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection’, Journal of Pharmaceutical and Biomedical Analysis. 153, 110–116.
- [8] Gao, W., Qi, L., Liu, Z., Majeed, S., Kitte, S. A., Xu, G. 2017. ‘Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection’, Sensors and Actuators B, 238, 468–472.
- [9] Min, K., Yoo, Y.J. 2009. ‘Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode’, Talanta, 80, 1007-1011.
- [10] Yeh, W-L., Kuo, Y-R., Cheng, S-H. 2008. ‘Voltammetry and flow-injection amperometry for indirect determination of dopamine’, Electrochemistry Communications, 10, 66–70.
- [11] Granero, A.M., Pierini, G.D., Robledo, S.N., Di Nezio, M.S., Fernández, H., Zon, M.A. 2016. ‘Simultaneous determination of ascorbic and uric acids and dopamine in human serum samples using three-way calibration with data from square wave voltammetry’, Microchemical Journal, 129, 205-212.
- [12] Hatefi-Mehrjardi, A., Beheshti-Marnani, A., Askari, N. 2019. ‘Cu+2 loaded "zeolite A"/ nitrogen-doped graphene as a novel hybrid for simultaneous voltammetry determination of carbamazepine and dopamine’, Materials Chemistry and Physics, 225, 137–144.
- [13] Oh, Y., Heien, M.L., Park, C., Kang, Y.M., Kim, J., Boschen, S.L., Shin, H., Cho, H.U, Blaha, C.D., Bennet, K.E., Lee, H.K., Jung, S.J., Kim, I.Y., Lee, K.H., Jang, D.P. 2018. ‘Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry’, Biosensors and Bioelectronics, 121, 174–182.
- [14] Zagal, J.H., Griveau, S., Silva, J.F., Nyokong, T., Bedioui, F. 2010. ‘Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions’, Coordination Chemistry Reviews, 254, 2755-2791.
- [15] Yang, J., Mu, D., Gao, Y., Tan, J., Lu, A., Ma, D. 2012. ‘Cobalt phthalocyanine-graphene complex for electro-catalytic oxidation of dopamine’, Journal of Natural Gas Chemistry, 21, 265-269.
- [16] Diab, N., Morales, D.M., Andronescu, C., Masoud, M., Schuhmann, W. 2019. ‘A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine’, Sensors and Actuators B: Chemical, 285,17-23.
- [17] Özdokur, K.V., Koçak, S., Ertaş, F.N. 2019. ‘Nanostructures Metal-Metal oxides and Their Electrocatalytic Applications’, Chapter in Advanced coating Materials. Editors: Li, L., Yang, Q. Wiley Interscience.
- [18] Wang, Q., Hu, W., Huang, Y. 2017. ‘Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction’, International Journal of Hydrogen Energy, 4, 5899-5907.
- [19] Casella, I.G., Contursi, M. 2012. ‘Cobalt oxide electrodeposition on various electrode substrates from alkaline medium containing Co–gluconate complexes: a comparative voltammetric study’, J Solid State Electrochem, 1, 3739-3746.
- [20] Hallaj, R., Akhtari, K., Salimi, A., Soltanian, S. 2013. ‘Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method’, Applied Surface Science, 276, 512–520.
- [21] Kuşçu, C., Özdokur, K. V., Koçak, S., Ertaş, F. N. 2019. ‘Development of cobalt oxide film modified electrode decorated with platinum nanoparticles as a biosensing platform for phenol’, International Journal of Environmental Analytical Chemistry, 14, 1-7.
- [22] Özdokur, K.V., Tatlı, A.Y., Yılmaz, B., Kocak, S., Ertaş, F.N. 2016. ‘Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation’, International Journal of Hydrogen Energy, 41, 5927–5933.
- [23] Koçak, Ç.C. 2019. Poly(Taurine‐Glutathione)/Carbon Nanotube Modified Glassy Carbon Electrode as a New Levofloxacin Sensor, Electroanalysis, 31(8) , 153 –1544.
- [24] Ulubay, Ş. Dursun, Z . 2010. ‘Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid’, Talanta, 80 (3), 1461–1466.
- [25] Deng, C., Chen, J., Wang, M., Xiao, C., Nie, Z., Yao, S. 2009. ‘A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode’, Biosensors and Bioelectronics, 24, 2091-2094.
- [26] Li, J., Yang, J., Yang, Z., Li, Y., Yu, S., Xu, Q., Hu, X. 2012. ‘Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine’, Analytical Methods, 4, 1725-1728.
- [27] Wang, P., Li, Y., Huang X., Wang, L. 2007. ‘Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid’, Talanta, 73, 431-437.
- [28] Sun, C.L., Lee, H.-H., Yang, J.-M., Wu, C.-C. 2011. ‘The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites’, Biosensors and Bioelectronics, 26, 3450-3455.
- [29] Palanisamy, S., Ku, S., Chen, S.-M. 2013. ‘Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite’, Microchimica Acta, 180, 1037-1042.
- [30] Yang, S.L., Li, G., Yang, R., Xia, M.M., Qu, L.B. 2011. ‘Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode’, Journal of Solid State Electrochemistry. 15, 1909-1918.
Preparation of cobalt oxide/gold nanoparticle modified glassy carbon electrode for electrochemical detection of dopamine
Year 2020,
Volume: 2 Issue: 1, 15 - 21, 23.06.2020
Ceren Kuşcu
Volkan Özdokur
,
Süleyman Koçak
Fatma Nil Ertas
Abstract
This study deals with electrochemical preparation of cobalt oxide modified glassy carbon electrodes decorated with gold nanoparticles as an effective platform for dopamine (DA) detection. The experimental parameters affecting the oxidation signal of DA by square wave voltammetry have been evaluated. Under optimal conditions, developed sensor exhibited a linear response towards to DA in the concentration range of 6.0 10−8 to 7.5 10−6 M. The detection and quantification limits were calculated as 2.0 10−8 and 6.0 10−8M, respectively. The repeatability and reproducibility of the electrode were calculated as 13.2 and 16.1 % for 6.5 10-7 M (N = 3), respectively. Finally, the sensor was successfully applied for the DA analysis in artificial cerebrospinal fluid, and the mean recovery was found as 105.8 ±6.5 % by standard addition method.
References
- [1] Di Chiara, G., Bassareo, V. 2007. ‘Reward system and addiction: what dopamine does and doesn’t do’, Current Opinion in Pharmacology, 7, 69–76.
- [2] Meder, D., Herz, D.M., Rowe, J.B., Lehericy, S., Siebner, H.R. 2019. ‘The role of dopamine in the brain - lessons learned from Parkinson's disease’ NeuroImage, 190, 79–93.
- [3] Bjorklund, A. , Dunnett, S. B. 2007. ‘Dopamine neuron systems in the brain: an update’, Trends in Neurosciences, 30, 194-202.
- [4] Wang, J., Du, R., Liu, W., Yao, L., Ding, F., Zou, P., Wang, Y., Wang, X., Zhao, Q., Rao, H. ‘Colorimetric and fluorometric dual-signal determination of dopamine by the use of Cu-Mn-O microcrystals and C dots’. 2019. Sensors and Actuators B: Chemical, 290, 125-132.
- [5] Naccarato, A., Gionfriddo, E., Sindona, G., Tagaralli, A. 2014. ‘Development of a simple and rapid solid phase microextracion-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine’ Analytica Chimica Acta, 810, 17–24.
- [6] Gottås, A., Ripel, Å., Boix, F., Vindenes, V., Mørland, J., Øiestad, E.L. 2015. ‘Determination of dopamine concentrations in brain extra cellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry’, Journal of Pharmacological and Toxicological Methods, 74, 75-79.
- [7] Oh, M., Huh, E., Oh, M.S., Jeong, J., Hon, S. 2018. ‘Development of a diagnostic method for Parkinson’s disease by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection’, Journal of Pharmaceutical and Biomedical Analysis. 153, 110–116.
- [8] Gao, W., Qi, L., Liu, Z., Majeed, S., Kitte, S. A., Xu, G. 2017. ‘Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection’, Sensors and Actuators B, 238, 468–472.
- [9] Min, K., Yoo, Y.J. 2009. ‘Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode’, Talanta, 80, 1007-1011.
- [10] Yeh, W-L., Kuo, Y-R., Cheng, S-H. 2008. ‘Voltammetry and flow-injection amperometry for indirect determination of dopamine’, Electrochemistry Communications, 10, 66–70.
- [11] Granero, A.M., Pierini, G.D., Robledo, S.N., Di Nezio, M.S., Fernández, H., Zon, M.A. 2016. ‘Simultaneous determination of ascorbic and uric acids and dopamine in human serum samples using three-way calibration with data from square wave voltammetry’, Microchemical Journal, 129, 205-212.
- [12] Hatefi-Mehrjardi, A., Beheshti-Marnani, A., Askari, N. 2019. ‘Cu+2 loaded "zeolite A"/ nitrogen-doped graphene as a novel hybrid for simultaneous voltammetry determination of carbamazepine and dopamine’, Materials Chemistry and Physics, 225, 137–144.
- [13] Oh, Y., Heien, M.L., Park, C., Kang, Y.M., Kim, J., Boschen, S.L., Shin, H., Cho, H.U, Blaha, C.D., Bennet, K.E., Lee, H.K., Jung, S.J., Kim, I.Y., Lee, K.H., Jang, D.P. 2018. ‘Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry’, Biosensors and Bioelectronics, 121, 174–182.
- [14] Zagal, J.H., Griveau, S., Silva, J.F., Nyokong, T., Bedioui, F. 2010. ‘Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions’, Coordination Chemistry Reviews, 254, 2755-2791.
- [15] Yang, J., Mu, D., Gao, Y., Tan, J., Lu, A., Ma, D. 2012. ‘Cobalt phthalocyanine-graphene complex for electro-catalytic oxidation of dopamine’, Journal of Natural Gas Chemistry, 21, 265-269.
- [16] Diab, N., Morales, D.M., Andronescu, C., Masoud, M., Schuhmann, W. 2019. ‘A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine’, Sensors and Actuators B: Chemical, 285,17-23.
- [17] Özdokur, K.V., Koçak, S., Ertaş, F.N. 2019. ‘Nanostructures Metal-Metal oxides and Their Electrocatalytic Applications’, Chapter in Advanced coating Materials. Editors: Li, L., Yang, Q. Wiley Interscience.
- [18] Wang, Q., Hu, W., Huang, Y. 2017. ‘Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction’, International Journal of Hydrogen Energy, 4, 5899-5907.
- [19] Casella, I.G., Contursi, M. 2012. ‘Cobalt oxide electrodeposition on various electrode substrates from alkaline medium containing Co–gluconate complexes: a comparative voltammetric study’, J Solid State Electrochem, 1, 3739-3746.
- [20] Hallaj, R., Akhtari, K., Salimi, A., Soltanian, S. 2013. ‘Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method’, Applied Surface Science, 276, 512–520.
- [21] Kuşçu, C., Özdokur, K. V., Koçak, S., Ertaş, F. N. 2019. ‘Development of cobalt oxide film modified electrode decorated with platinum nanoparticles as a biosensing platform for phenol’, International Journal of Environmental Analytical Chemistry, 14, 1-7.
- [22] Özdokur, K.V., Tatlı, A.Y., Yılmaz, B., Kocak, S., Ertaş, F.N. 2016. ‘Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation’, International Journal of Hydrogen Energy, 41, 5927–5933.
- [23] Koçak, Ç.C. 2019. Poly(Taurine‐Glutathione)/Carbon Nanotube Modified Glassy Carbon Electrode as a New Levofloxacin Sensor, Electroanalysis, 31(8) , 153 –1544.
- [24] Ulubay, Ş. Dursun, Z . 2010. ‘Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid’, Talanta, 80 (3), 1461–1466.
- [25] Deng, C., Chen, J., Wang, M., Xiao, C., Nie, Z., Yao, S. 2009. ‘A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode’, Biosensors and Bioelectronics, 24, 2091-2094.
- [26] Li, J., Yang, J., Yang, Z., Li, Y., Yu, S., Xu, Q., Hu, X. 2012. ‘Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine’, Analytical Methods, 4, 1725-1728.
- [27] Wang, P., Li, Y., Huang X., Wang, L. 2007. ‘Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid’, Talanta, 73, 431-437.
- [28] Sun, C.L., Lee, H.-H., Yang, J.-M., Wu, C.-C. 2011. ‘The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites’, Biosensors and Bioelectronics, 26, 3450-3455.
- [29] Palanisamy, S., Ku, S., Chen, S.-M. 2013. ‘Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite’, Microchimica Acta, 180, 1037-1042.
- [30] Yang, S.L., Li, G., Yang, R., Xia, M.M., Qu, L.B. 2011. ‘Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode’, Journal of Solid State Electrochemistry. 15, 1909-1918.