Research Article
BibTex RIS Cite

The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties

Year 2020, Volume: 2 Issue: 1, 29 - 36, 23.06.2020

Abstract

In the present study, new Schiff base compound (Z)-4-((quinolin-2-ylmethyleneamino)methyl)phenol (3), its phthalonitrile derivative (Z)-4-(4-((quinolin-2-ylmethyleneamino)methyl)phenoxy)phthalonitrile (4) were synthesized in the first step. Then, zinc(II) (Pc‒5), cobalt(II) (Pc‒6) and copper(II) (Pc‒7) phthalocyanines containing Schiff base group with quinolin moiety on peripheral positions were synthesized. All new compounds were characterized by general spectroscopic techniques. Aggregation properties of the obtained metallophthalocyanines were researched in polar and apolar solvents.

Supporting Institution

Karadeniz Technical University

Thanks

This study was supported by the Research Fund of Karadeniz Technical University

References

  • [1] C.C. Leznoff, A.B.P. Lever. 1989. Phthalocyanines: Properties and Applications, VCH Publishers, New York, , vol. 1.
  • [2] K. Kadish, K.M. Smith, R. (Eds.) Guilard, The Porphyrin Handbook, Academic Press, Boston, 2003, vol. 15–20.
  • [3] N.B. McKeown, Phthalocyanine Materials Synthesis, Structure and Function, Cambridge University Press, 1998.
  • [4] B. Ertem, H. Yalazan, Ö. Güngör, G. Sarkı, M. Durmuş, E.T. Saka, H. Kantekin, J. Luminescence, 204, 2018, 464‒471.
  • [5] H. Kantekin, E.T. Saka, B. Ertem, M.N. Mısır, H. Yalazan, G. Sarkı, J. Coord. Chem., 71:1, 2018, 164‒182.
  • [6] K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angewandte Chemie International Edition, 44, 2005, 4763–4766.
  • [7] J.L. Sesler, J. Jayawickramarajah, A. Gouloumis, G.D. Patnos, T. Torres, D.M. Guldi, Tetrahedron, 62, 2006, 2123–2131.
  • [8] X. Huang, F.Q. Zhao, Z.Y. Li, L. Huang, Y.W. Tang, F. Zhang, C.H. Tung, Chemistry Letters, 36, 2007, 108–115.
  • [9] X. Huang, F.Q. Zhao, Z.Y. Li, Y.W. Tang, F. Zhang, C.H. Tung, Langmuir, 23, 2007, 5167–5172.
  • [10] M. Morisue, Y. Kobuke, Chemistry – A European Journal, 14, 2008, 4993–5000.
  • [11] H. Manfred, Alkaloids: Nature's Curse or Blessing?,Weinheim, Wiley-VCH, 2002.
  • [12] C.Y. Poon, P. Chiu, A synthesis of the tetracyclic carboskeleton of isaindigotidione. Tetrahedron Lett., 45, 2004, 2985-8.
  • [13] S. Ökten, O. Çakmak, Ş. Tekin, The structure activity relationship (SAR) study of 6,8-disubstituted quinoline derivatives as anti cancer agents, Turk J Clin Lab., 8(4), 2017, 152‒159.
  • [14] I. Jacquemond-Collet, F. Benoit-Vical, A. Valentin, E. Stanislas, M. Mallié, I. Fourasté Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis, Planta Med., 68(1), 2002, 68‒69.
  • [15] KC. Fang, YL. Chen, J. Sheu, T.C. Wang, C.C. Tzeng, Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives, J Med Chem., 43, 20, 2000, 3809‒3812.
  • [16] P. Palit, P. Paira, A. Hazra, S. Banerjee, A.D. Gupta, S.G. Dastidar, N.B. Mondal, Phase transfer catalyzed synthesis of bisquinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation, Eur J Med Chem., 44, 2009, 845−853.
  • [17] B. Podeszwa, H. Niedbala, J. Polanski, R. Musiol, D.Tabak, J.Finster, K. Serafin, M. Milczarek, J. Wietrzyk, S. Boryczka, W. Mol, J. Jampilek, J. Dohnal, D.S. Kalinowski, Dolezal, D.R. Richardson, Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines, Bioorganic & Medicinal Chemistry Letters, 17, 2007, 6138‒6141.
  • [18] R. Musiol, J. Jampilek, V. Buchta, et al. Antifungal properties of new series of quinoline derivatives, Bioorg Med Chem., 14, 2006, 3592‒3598.
  • [19] S. Ökten, O. Çakmak, R. Erenler, Ö.Y. Şahin, Ş. Tekin, Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities, Turk J Chem. 37, 2013, 896‒908.
  • [20] S. Ökten, Ö.Y. Şahin, Ş. Tekin, O. Çakmak, In vitro antiproliferative/ cytotoxic activity of novel quinoline compound SO-18 against various cancer cell lines, J Biotechn., 185S, 2014, S37‒125.
  • [21] F. Zouhiri, M. Danet, C. Benard, et al. HIV-1 replication inhibitors of the styrylquinoline class: Introduction of an additional carboxyl group at the C-5 position of the quinoline, Tetrahedron Lett., 46, 2005, 2201−2205.
  • [22] A. Şahin, O. Çakmak, İ. Demirtaş, S. Ökten, A. Tutar, Efficent and selective synthesis of quinoline derivatives, Tetrahedron, 64, 2008, 10068‒10074.
  • [23] S. Broch, B. Aboab, F. Anizon, P. Moreau, Synthesis and in vitro antiproliferative activities of quinoline derivatives, Eur J Med Chem., 45, 2010, 1657‒1662.
  • [24] J.E. Nycz, M. Szala, G.J. Malecki, M. Nowak, J. Kusz, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 2014, 351‒359.
  • [25] B. Machura, J. Milek, J. Kusz, J. Nycz, D. Tabak, Polyhedron, 27, 2008, 1121‒1130.
  • [26] S.D. Lytton, B. Mester, I. Dayan, H. Glickstein, J. Libman, A. Shanzer, Z.I. Cabantchik, Blood, 81, 1993, 214–221.
  • [27] Z. Rezvani, L.R. Ahar, K. Nejati, S.M. Seyedahmadian, Acta Chim. Slov., 51, 2004, 675‒686.
  • [28] P. Sen, S.Z. Yildiz, M. Tuna, M. Canlica, J. Organomet. Chem., 769, 2014, 38‒45.
  • [29] S. Altun, A.R. Özkaya, M. Bulut, Polyhedron, 48, 2012, 31‒42.
  • [30] A.W. Snow, Phthalocyanine aggregation, in: K. Kadish, R. Guilard, K.M. Smith, The Porphyrin Handbook, Phthalocyanines: Properties and Materials, vol. 17, Academic Press, Amsterdam, 2003, pp. 129‒176.
  • [31] H. Enkelkamp, R.J.M. Nolte, J. Porphy. Phthalocyan., 4, 2000, 454‒459.
  • [32] D.D. Dominguez, A.W. Snow, J.S. Shirk, R.S. Pong, J. Porphy. Phthalocyan., 5, 2001, 582‒592.
Year 2020, Volume: 2 Issue: 1, 29 - 36, 23.06.2020

Abstract

References

  • [1] C.C. Leznoff, A.B.P. Lever. 1989. Phthalocyanines: Properties and Applications, VCH Publishers, New York, , vol. 1.
  • [2] K. Kadish, K.M. Smith, R. (Eds.) Guilard, The Porphyrin Handbook, Academic Press, Boston, 2003, vol. 15–20.
  • [3] N.B. McKeown, Phthalocyanine Materials Synthesis, Structure and Function, Cambridge University Press, 1998.
  • [4] B. Ertem, H. Yalazan, Ö. Güngör, G. Sarkı, M. Durmuş, E.T. Saka, H. Kantekin, J. Luminescence, 204, 2018, 464‒471.
  • [5] H. Kantekin, E.T. Saka, B. Ertem, M.N. Mısır, H. Yalazan, G. Sarkı, J. Coord. Chem., 71:1, 2018, 164‒182.
  • [6] K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angewandte Chemie International Edition, 44, 2005, 4763–4766.
  • [7] J.L. Sesler, J. Jayawickramarajah, A. Gouloumis, G.D. Patnos, T. Torres, D.M. Guldi, Tetrahedron, 62, 2006, 2123–2131.
  • [8] X. Huang, F.Q. Zhao, Z.Y. Li, L. Huang, Y.W. Tang, F. Zhang, C.H. Tung, Chemistry Letters, 36, 2007, 108–115.
  • [9] X. Huang, F.Q. Zhao, Z.Y. Li, Y.W. Tang, F. Zhang, C.H. Tung, Langmuir, 23, 2007, 5167–5172.
  • [10] M. Morisue, Y. Kobuke, Chemistry – A European Journal, 14, 2008, 4993–5000.
  • [11] H. Manfred, Alkaloids: Nature's Curse or Blessing?,Weinheim, Wiley-VCH, 2002.
  • [12] C.Y. Poon, P. Chiu, A synthesis of the tetracyclic carboskeleton of isaindigotidione. Tetrahedron Lett., 45, 2004, 2985-8.
  • [13] S. Ökten, O. Çakmak, Ş. Tekin, The structure activity relationship (SAR) study of 6,8-disubstituted quinoline derivatives as anti cancer agents, Turk J Clin Lab., 8(4), 2017, 152‒159.
  • [14] I. Jacquemond-Collet, F. Benoit-Vical, A. Valentin, E. Stanislas, M. Mallié, I. Fourasté Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis, Planta Med., 68(1), 2002, 68‒69.
  • [15] KC. Fang, YL. Chen, J. Sheu, T.C. Wang, C.C. Tzeng, Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives, J Med Chem., 43, 20, 2000, 3809‒3812.
  • [16] P. Palit, P. Paira, A. Hazra, S. Banerjee, A.D. Gupta, S.G. Dastidar, N.B. Mondal, Phase transfer catalyzed synthesis of bisquinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation, Eur J Med Chem., 44, 2009, 845−853.
  • [17] B. Podeszwa, H. Niedbala, J. Polanski, R. Musiol, D.Tabak, J.Finster, K. Serafin, M. Milczarek, J. Wietrzyk, S. Boryczka, W. Mol, J. Jampilek, J. Dohnal, D.S. Kalinowski, Dolezal, D.R. Richardson, Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines, Bioorganic & Medicinal Chemistry Letters, 17, 2007, 6138‒6141.
  • [18] R. Musiol, J. Jampilek, V. Buchta, et al. Antifungal properties of new series of quinoline derivatives, Bioorg Med Chem., 14, 2006, 3592‒3598.
  • [19] S. Ökten, O. Çakmak, R. Erenler, Ö.Y. Şahin, Ş. Tekin, Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities, Turk J Chem. 37, 2013, 896‒908.
  • [20] S. Ökten, Ö.Y. Şahin, Ş. Tekin, O. Çakmak, In vitro antiproliferative/ cytotoxic activity of novel quinoline compound SO-18 against various cancer cell lines, J Biotechn., 185S, 2014, S37‒125.
  • [21] F. Zouhiri, M. Danet, C. Benard, et al. HIV-1 replication inhibitors of the styrylquinoline class: Introduction of an additional carboxyl group at the C-5 position of the quinoline, Tetrahedron Lett., 46, 2005, 2201−2205.
  • [22] A. Şahin, O. Çakmak, İ. Demirtaş, S. Ökten, A. Tutar, Efficent and selective synthesis of quinoline derivatives, Tetrahedron, 64, 2008, 10068‒10074.
  • [23] S. Broch, B. Aboab, F. Anizon, P. Moreau, Synthesis and in vitro antiproliferative activities of quinoline derivatives, Eur J Med Chem., 45, 2010, 1657‒1662.
  • [24] J.E. Nycz, M. Szala, G.J. Malecki, M. Nowak, J. Kusz, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 2014, 351‒359.
  • [25] B. Machura, J. Milek, J. Kusz, J. Nycz, D. Tabak, Polyhedron, 27, 2008, 1121‒1130.
  • [26] S.D. Lytton, B. Mester, I. Dayan, H. Glickstein, J. Libman, A. Shanzer, Z.I. Cabantchik, Blood, 81, 1993, 214–221.
  • [27] Z. Rezvani, L.R. Ahar, K. Nejati, S.M. Seyedahmadian, Acta Chim. Slov., 51, 2004, 675‒686.
  • [28] P. Sen, S.Z. Yildiz, M. Tuna, M. Canlica, J. Organomet. Chem., 769, 2014, 38‒45.
  • [29] S. Altun, A.R. Özkaya, M. Bulut, Polyhedron, 48, 2012, 31‒42.
  • [30] A.W. Snow, Phthalocyanine aggregation, in: K. Kadish, R. Guilard, K.M. Smith, The Porphyrin Handbook, Phthalocyanines: Properties and Materials, vol. 17, Academic Press, Amsterdam, 2003, pp. 129‒176.
  • [31] H. Enkelkamp, R.J.M. Nolte, J. Porphy. Phthalocyan., 4, 2000, 454‒459.
  • [32] D.D. Dominguez, A.W. Snow, J.S. Shirk, R.S. Pong, J. Porphy. Phthalocyan., 5, 2001, 582‒592.
There are 32 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Halise Yalazan 0000-0003-1234-2721

Ayşe Aktaş Kamiloğlu 0000-0002-7347-4018

Halit Kantekin 0000-0003-2625-2815

Ümmühan Ocak 0000-0003-3696-4736

Publication Date June 23, 2020
Submission Date May 21, 2020
Acceptance Date June 11, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Yalazan, H., Aktaş Kamiloğlu, A., Kantekin, H., Ocak, Ü. (2020). The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties. Turkish Journal of Analytical Chemistry, 2(1), 29-36.
AMA Yalazan H, Aktaş Kamiloğlu A, Kantekin H, Ocak Ü. The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties. TurkJAC. June 2020;2(1):29-36.
Chicago Yalazan, Halise, Ayşe Aktaş Kamiloğlu, Halit Kantekin, and Ümmühan Ocak. “The New Tetra Substituted Metallophthalocyanines Bearing Four Schiff Bases on Periphery: Synthesis, Spectroscopic Properties and Investigation of the Effect of Various Central Metals on Aggregation Properties”. Turkish Journal of Analytical Chemistry 2, no. 1 (June 2020): 29-36.
EndNote Yalazan H, Aktaş Kamiloğlu A, Kantekin H, Ocak Ü (June 1, 2020) The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties. Turkish Journal of Analytical Chemistry 2 1 29–36.
IEEE H. Yalazan, A. Aktaş Kamiloğlu, H. Kantekin, and Ü. Ocak, “The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties”, TurkJAC, vol. 2, no. 1, pp. 29–36, 2020.
ISNAD Yalazan, Halise et al. “The New Tetra Substituted Metallophthalocyanines Bearing Four Schiff Bases on Periphery: Synthesis, Spectroscopic Properties and Investigation of the Effect of Various Central Metals on Aggregation Properties”. Turkish Journal of Analytical Chemistry 2/1 (June 2020), 29-36.
JAMA Yalazan H, Aktaş Kamiloğlu A, Kantekin H, Ocak Ü. The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties. TurkJAC. 2020;2:29–36.
MLA Yalazan, Halise et al. “The New Tetra Substituted Metallophthalocyanines Bearing Four Schiff Bases on Periphery: Synthesis, Spectroscopic Properties and Investigation of the Effect of Various Central Metals on Aggregation Properties”. Turkish Journal of Analytical Chemistry, vol. 2, no. 1, 2020, pp. 29-36.
Vancouver Yalazan H, Aktaş Kamiloğlu A, Kantekin H, Ocak Ü. The new tetra substituted metallophthalocyanines bearing four Schiff bases on periphery: Synthesis, spectroscopic properties and investigation of the effect of various central metals on aggregation properties. TurkJAC. 2020;2(1):29-36.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/