Review
BibTex RIS Cite
Year 2020, Volume: 2 Issue: 1, 47 - 54, 23.06.2020

Abstract

References

  • J.E. Bager, P. Hjerpe, K. Manhem, S. Bjorck, S. Franzen, A. Rosengren, S.A. Eryd, Treatment of hypertension in old patients without previous cardiovascular disease, J Hypertens, 37, 2019, 2269-2279.
  • P.K. Whelton, N.R.C. Campbell, D.T. Lackland, G. Parati, C.V.S. Ram, M.A. Weber, X.H. Zhang, Strategies for prevention of cardiovascular disease in adults with hypertension, J Clin Hypertens, 22, 2020, 132-134.
  • J. Naish, D.S. Court, Medical Sciences, second ed., Saunders Ltd., London, 2014, p. 562.
  • N.R. Poulter, D. Prabhakaran, M. Caulfield, Hypertension, Lancet, 386, 2015, 801–12.
  • R. McManus, M. Constanti, C.N. Floyd, M. Glover, A.S. Wierzbicki, Managing cardiovascular disease risk in hypertension, Lancet, 395, 2020, 869-870.
  • V.P. Arcangelo, A.M. Peterson, Pharmacotherapeutics for Advanced Practice: A Practical Approach, fourth ed., Lippincott Williams & Wilkins, Philadelphia, 2016, p. 205.
  • T.I. Chang, M.J. Sarnak, Intensive blood pressure targets and kidney disease, Clin J Am Soc Nephrol, 13, 2018, 1575-1577.
  • A. Duni, E. Dounousi, P. Pavlakou, T. Eleftheriadis, V. Liakopoulos, Hypertension in chronic kidney disease: Novel insights, Curr Hypertens Rev, 16, 2020, 45-54.
  • A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo, D.W. Jones, B.J. Materson, S. Oparil, J.T. Wright, E.J. Roccella, Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure, Hypertension, 42, 2003, 1206–1252.
  • A.S. Go, M.A. Bauman, S.M. Coleman King, G.C. Fonarow, W. Lawrence, K.A. Williams, E. Sanchez, An effective approach to high blood pressure control: A science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention, Hypertension, 63, 2014, 878–85.
  • C.S. Wiysonge, H.A. Bradley, J. Volmink, B.M. Mayosi, L.H. Opie, Beta-blockers for hypertension, Cochrane Database Syst Rev, 1, 2017, CD002003.
  • S.W. Chan, M. Hu, B. Tomlinson, The pharmacogenetics of beta-adrenergic receptor antagonists in the treatment of hypertension and heart failure, Expert Opin Drug Metab Toxicol, 8, 2012, 767-790.
  • Y. Agrawal, J.K. Kalavakunta., V. Gupta, Antiarrhythmic agent induced ventricular tachycardia, Am J Ther, 24, 2017, E487-E487.
  • E.M. Vaughan Williams, A classification of antiarrhythmic actions reassessed after a decade of new drugs, J Clin Pharmacol, 24, 1984, 129-147.
  • P. Brugada, The Vaughan-Williams classification of antiarrhythmic drugs - Why don’t we find its clinical counterpart pace, Pacing Clin Electrophysiol, 13, 1990, 339-343.
  • J. Ritter, R. Flower, G. Henderson, H. Rang, Rang and Dale's Pharmacology, seventh ed., Churchill Livingstone, London, 2012, p. 255.
  • M. Lei, D.L. Wu, D.A. Terrar, C.L.-H. Huang, Modernized Classification of cardiac antiarrhythmic drugs, Circulation, 138, 2018, 1879-1896.
  • D.P. Zipes, A consideration of antiarrhythmic therapy, Circulation, 72, 1985, 949-956.
  • J.W. Upward, D.G. Waller, C.F. George, Class II antiarrhythmic agents, Pharmacol Ther, 37, 1988, 81-109.
  • W.H. Frishman, Chapter 63 - β-Adrenergic Blockers, Hypertension, second ed., In: A Companion to Brenner and Rector’s The Kidney, 2005, pp. 653-659.
  • A.J. Trevor, B.G. Katzung, M. Kruidering-Hall, Katzung & Trevor’s Pharmacology Examination & Board Review, eleventh ed., McGraw-Hill Education, New York, 2015.
  • N. Freemantle, J. Cleland, P. Young, J. Mason, J. Harrison, Beta blockade after myocardial infarction: systematic review and meta regression analysis, BMJ, 318, 1999, 1730-1737.
  • P.A. James, S. Oparil, B.L. Carter, W.C. Cushman, C. Dennison-Himmelfarb, J. Handler, D.T. Lackland, M.L. LeFevre, T.D. MacKenzie, O. Ogedegbe, S.C. Smith, L.P. Svetkey, S.J. Taler, R.R. Townsend, J.T. Wright, A.S. Narva, E. Ortiz, 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8), JAMA, 311, 2014, 507–520.
  • E.A. Ushkalova, S.K. Zyryanov, K.E. Zatolochina, A.P. Pereverzev, N.A. Chukhareva, Antiarrhythmic drugs use in elderly patients. Vaughan Williams class I and II drugs, Ration Pharmacother Cardiol, 12, 2016, 471-478.
  • C. Hocht, F.M. Bertera, J.S. Del Mauro, Y.S. Plantamura, C.A. Taira, A.H. Polizio, What is the real efficacy of beta-blockers for the treatment of essential hypertension? Curr Pharm Des, 23, 2017, 4658-4677.
  • J.M. Cruickshank, The Role of Beta-Blockers in The Treatment of Hypertension. In: Hypertension: From Basic Research to Clinical Practice, M.S. Islam (ed), Vol. 956, Springer, Cham, 2016, pp. 149-166.
  • T.K. Morgan, R. Lis, W.C. Lumma, R.A. Wohl, K. Nickisch, G.B. Phillips, J.M. Lind, J.W. Lampe, S.V. Dimeo, H.J. Reiser, T.M. Argentieri, M.E. Sullivan, E. Camtor, Synthesis and pharmacological studies of a novel antiarrhythmic agent with class-II and class-III activities, Abstr Pap Am Chem Soc, 199, 1990, 135-MEDI.
  • L.L. Brunton, J.S. Lazo, K.L. Parker, The Pharmacological Basis of Therapeutics, eleventh ed, McGraw-Hill Education, New York, 2006.
  • D. Ladage, R.H.G. Schwinger, K. Brixius, Cardio-selective beta-blocker: Pharmacological evidence and their influence on exercise capacity, Cardiovasc Ther, 31, 2013, 76-83.
  • K.Y. Xu, E.D.P. Campbell, S.S. Gill, R. Nesdole, R.J. Campbell, Impact of combination glaucoma therapies on beta-blocker exposure, J Glaucoma, 26, 2017, E107-E109.
  • A.V. Srinivasan, Propranolol: A 50-year historical perspective, Ann Indian Acad Neurol, 22, 2019, 21-26.
  • P.R. Kowey, Pharmacological effects of antiarrhythmic drugs, Arch Intern Med, 158, 1998, 325-332.
  • R. Mehvar, D.R. Brocks, Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans, J Pharm Pharm Sci, 4, 2001, 185-200.
  • W.H. Frishman, M. Alwarshetty, Beta-adrenergic blockers in systemic hypertension - Pharmacokinetic considerations related to the current guidelines, Clin Pharmacokinet, 41, 2002, 505-516.
  • B. Terhaag, Clinical Pharmacokinetics of the Beta-Receptor Blockers Propranolol and Talinolol. Z Klin Med, 44, 1989, 119-124.
  • A. Corletto, H. Frohlich, T. Tager, M. Hochadel, R. Zahn, C. Kilkowski, R. Winkler, J. Senges, H.A. Katus, L. Frankenstein, Beta blockers and chronic heart failure patients: Prognostic impact of a dose targeted beta blocker therapy vs. heart rate targeted strategy, Clin Res Cardiol, 107, 2018, 1040-1049.
  • B.G. Katzung, Basic and Clinical Pharmacology, fourteenth ed., M. Weitz and P. Boyle (eds), McGraw-Hill Education, New York, 2020.
  • J.B. Schwartz, D. Keefe, D.C. Harrison, Adverse effects of antiarrhythmic drugs, Drugs 21, 1981, 23-45.
  • W. Amjad, W. Qureshi, A. Farooq, U. Sohail, S. Khatoon, S. Pervaiz, P. Narra, S.M. Hasan, F. Ali, A. Ullah, S. Guttmann, Gastrointestinal side effects of antiarrhythmic medications: A review of current literature, Cureus, 9, 2017, e1646.
  • Z. Kun, Y. Shuai, T. Dongmei, Z. Yuyang, Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode, J Electroanal Chem, 709, 2013, 99-105.
  • N.A. Alarfaj, M.F. El‐Tohamy, Construction and validation of new electrochemical carbon nanotubes sensors for determination of acebutolol hydrochloride in pharmaceuticals and biological fluids, J Chin Chem Soc, 61, 2014, 910-920.
  • J.S. Choi, J.P. Burm, Pharmacokinetics of acebutolol and its main metabolite, diacetolol after oral administration of acebutolol in rabbits with carbon tetrachloride-induced hepatic failure, Arch Pharm Res, 25, 2002, 541-545.
  • R.R. Gaichore, A.K. Srivastava, Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and c-cyclodextrin, J Inc Phenom Macrocycl Chem, 78, 2014, 195-206.
  • M. Raj, P. Gupta, N.R. Goyal, Poly-Melamine film modified sensor for the sensitive and selective determination of propranolol, a β-blocker in biological fluids, J Electrochem Soc, 163, 2016, H388-H394.
  • P. Gupta, K.S. Yadav, B. Agrawal, N.R. Goyal, A novel graphene and conductive polymer modified pyrolyticgraphite sensor for determination of propranolol in biological fluids, Sens Actuators B Chem, 204, 2014, 791-798.
  • Z. Kun, H. Yi, Z. Chengyun, Y. Yue, Z. Shuliang, Y. Yuyang, Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassycarbon electrode, Electrochim Acta, 80, 2012, 405-412.
  • T. Alizadeh, L. Allahyari, Highly-selective determination of carcinogenic derivative ofpropranolol by using a carbon paste electrode incorporated withnano-sized propranolol-imprinted polymer, Electrochim Acta, 111, 2013, 663-673.
  • H.T. Purushothama, Y.A. Nayaka, Electrochemical determination of propranolol using reduced graphene oxide modified carbon paste electrode, Anal Bioanal Electrochem, 11, 2019, 1575-1589.
  • S.Z. Mohammadi, S. Tajik, H. Beitollahi, Electrochemical determination of propranolol by using modified screen-printed electrodes, Indian J Chem Technol, 27, 2020, 73-78.
  • T. Łuczak, A nanogold supported inorganic/organic hybrid 3D sensor for electrochemical quantification of propranolol-effective antagonist of β-adrenergic receptors, Ionics, 25, 2019, 5515-5525.
  • M.R. Nateghi, Synthesis of (Ti0.5V0.5)3C2 as novel electrocatalyst to modify carbon paste electrode for measurement of propranolol in real samples, Russ J Electrochem, 55, 2019, 106-115.
  • E.R. Sartori, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode, Talanta, 81, 2010, 1418-1424.
  • Z. Kun, C. Hongtao, Y. Yue, B. Zhihong, L. Fangzheng, L. Sanming, Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution, Ionics, 21, 2015, 1129-1140.
  • A.F. Al-Ghamdi, M.M. Hefnawy, A.A. Al-Majed, F.F. Belal, Development of square-wave adsorptive stripping voltammetric method for determination of acebutolol in pharmaceutical formulations and biological fluids, Chem Cent J, 6, 2012, 15.
  • A. Levent, Voltammetric behavior of acebutolol on pencil graphite electrode: highly sensitive determination in real samples by square‑wave anodic stripping voltammetry, J Iran Chem Soc, 14, 2017, 2495-2502.
  • A. Yamuna, P. Sundaresan, S.M. Chen, S.R.M. Sayed, T.W. Chen, S.P. Rwei, X. Liu, Electrochemical determination of acebutolol on the electrochemically pretreated screen printed carbon electrode, Int J Electrochem Sci, 14, 2019, 6168-6178.
  • A.M. Bagoji, S.M. Patil, T.S. Nandibewoor, Electroanalysis of cardioselective betaadrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism, Cogent Chem, 2, 2016, 1172393.
  • M. Silva, S. Morenta-Zarcero, D. Pérez-Quintanilla, I. Sierra, Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica, Sens Actuators B Chem, 283, 2019, 434-442.

Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol

Year 2020, Volume: 2 Issue: 1, 47 - 54, 23.06.2020

Abstract

Antiarrhythmic agents are used to suppress abnormal rhythms of the heart. Class II antiarrhythmic agents are beta blockers used to treat supraventricular tachycardias. Voltammetric analysis of class II antiarrhythmic drug active ingredients propranolol and acebutolol carried out with various modified/non-modified electrodes using cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry and square wave voltammetry were compiled from the literature. The effect of buffer solution and pH was investigated. Scan rate results obtained with the voltammetric methods showed whether the redox process of the drug active ingredient diffusion or adsorption controlled on the electrode used in the selected supporting electrolyte. Results of the quantitative analysis of these drugs were evaluated in terms of parameters such as linearity range, limit of detection, stability, robustness, repeatability, reproducibility and sensitivity. Accuracy and precision of the validated methods were investigated by combining the results obtained from the pharmaceutical dosage forms of the drug active ingredients. Finally, voltammetric behavior of the drugs in real samples such as human serum and urine was evaluated and it was examined whether the analysis results were affected by the other substances in real samples.

References

  • J.E. Bager, P. Hjerpe, K. Manhem, S. Bjorck, S. Franzen, A. Rosengren, S.A. Eryd, Treatment of hypertension in old patients without previous cardiovascular disease, J Hypertens, 37, 2019, 2269-2279.
  • P.K. Whelton, N.R.C. Campbell, D.T. Lackland, G. Parati, C.V.S. Ram, M.A. Weber, X.H. Zhang, Strategies for prevention of cardiovascular disease in adults with hypertension, J Clin Hypertens, 22, 2020, 132-134.
  • J. Naish, D.S. Court, Medical Sciences, second ed., Saunders Ltd., London, 2014, p. 562.
  • N.R. Poulter, D. Prabhakaran, M. Caulfield, Hypertension, Lancet, 386, 2015, 801–12.
  • R. McManus, M. Constanti, C.N. Floyd, M. Glover, A.S. Wierzbicki, Managing cardiovascular disease risk in hypertension, Lancet, 395, 2020, 869-870.
  • V.P. Arcangelo, A.M. Peterson, Pharmacotherapeutics for Advanced Practice: A Practical Approach, fourth ed., Lippincott Williams & Wilkins, Philadelphia, 2016, p. 205.
  • T.I. Chang, M.J. Sarnak, Intensive blood pressure targets and kidney disease, Clin J Am Soc Nephrol, 13, 2018, 1575-1577.
  • A. Duni, E. Dounousi, P. Pavlakou, T. Eleftheriadis, V. Liakopoulos, Hypertension in chronic kidney disease: Novel insights, Curr Hypertens Rev, 16, 2020, 45-54.
  • A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo, D.W. Jones, B.J. Materson, S. Oparil, J.T. Wright, E.J. Roccella, Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure, Hypertension, 42, 2003, 1206–1252.
  • A.S. Go, M.A. Bauman, S.M. Coleman King, G.C. Fonarow, W. Lawrence, K.A. Williams, E. Sanchez, An effective approach to high blood pressure control: A science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention, Hypertension, 63, 2014, 878–85.
  • C.S. Wiysonge, H.A. Bradley, J. Volmink, B.M. Mayosi, L.H. Opie, Beta-blockers for hypertension, Cochrane Database Syst Rev, 1, 2017, CD002003.
  • S.W. Chan, M. Hu, B. Tomlinson, The pharmacogenetics of beta-adrenergic receptor antagonists in the treatment of hypertension and heart failure, Expert Opin Drug Metab Toxicol, 8, 2012, 767-790.
  • Y. Agrawal, J.K. Kalavakunta., V. Gupta, Antiarrhythmic agent induced ventricular tachycardia, Am J Ther, 24, 2017, E487-E487.
  • E.M. Vaughan Williams, A classification of antiarrhythmic actions reassessed after a decade of new drugs, J Clin Pharmacol, 24, 1984, 129-147.
  • P. Brugada, The Vaughan-Williams classification of antiarrhythmic drugs - Why don’t we find its clinical counterpart pace, Pacing Clin Electrophysiol, 13, 1990, 339-343.
  • J. Ritter, R. Flower, G. Henderson, H. Rang, Rang and Dale's Pharmacology, seventh ed., Churchill Livingstone, London, 2012, p. 255.
  • M. Lei, D.L. Wu, D.A. Terrar, C.L.-H. Huang, Modernized Classification of cardiac antiarrhythmic drugs, Circulation, 138, 2018, 1879-1896.
  • D.P. Zipes, A consideration of antiarrhythmic therapy, Circulation, 72, 1985, 949-956.
  • J.W. Upward, D.G. Waller, C.F. George, Class II antiarrhythmic agents, Pharmacol Ther, 37, 1988, 81-109.
  • W.H. Frishman, Chapter 63 - β-Adrenergic Blockers, Hypertension, second ed., In: A Companion to Brenner and Rector’s The Kidney, 2005, pp. 653-659.
  • A.J. Trevor, B.G. Katzung, M. Kruidering-Hall, Katzung & Trevor’s Pharmacology Examination & Board Review, eleventh ed., McGraw-Hill Education, New York, 2015.
  • N. Freemantle, J. Cleland, P. Young, J. Mason, J. Harrison, Beta blockade after myocardial infarction: systematic review and meta regression analysis, BMJ, 318, 1999, 1730-1737.
  • P.A. James, S. Oparil, B.L. Carter, W.C. Cushman, C. Dennison-Himmelfarb, J. Handler, D.T. Lackland, M.L. LeFevre, T.D. MacKenzie, O. Ogedegbe, S.C. Smith, L.P. Svetkey, S.J. Taler, R.R. Townsend, J.T. Wright, A.S. Narva, E. Ortiz, 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8), JAMA, 311, 2014, 507–520.
  • E.A. Ushkalova, S.K. Zyryanov, K.E. Zatolochina, A.P. Pereverzev, N.A. Chukhareva, Antiarrhythmic drugs use in elderly patients. Vaughan Williams class I and II drugs, Ration Pharmacother Cardiol, 12, 2016, 471-478.
  • C. Hocht, F.M. Bertera, J.S. Del Mauro, Y.S. Plantamura, C.A. Taira, A.H. Polizio, What is the real efficacy of beta-blockers for the treatment of essential hypertension? Curr Pharm Des, 23, 2017, 4658-4677.
  • J.M. Cruickshank, The Role of Beta-Blockers in The Treatment of Hypertension. In: Hypertension: From Basic Research to Clinical Practice, M.S. Islam (ed), Vol. 956, Springer, Cham, 2016, pp. 149-166.
  • T.K. Morgan, R. Lis, W.C. Lumma, R.A. Wohl, K. Nickisch, G.B. Phillips, J.M. Lind, J.W. Lampe, S.V. Dimeo, H.J. Reiser, T.M. Argentieri, M.E. Sullivan, E. Camtor, Synthesis and pharmacological studies of a novel antiarrhythmic agent with class-II and class-III activities, Abstr Pap Am Chem Soc, 199, 1990, 135-MEDI.
  • L.L. Brunton, J.S. Lazo, K.L. Parker, The Pharmacological Basis of Therapeutics, eleventh ed, McGraw-Hill Education, New York, 2006.
  • D. Ladage, R.H.G. Schwinger, K. Brixius, Cardio-selective beta-blocker: Pharmacological evidence and their influence on exercise capacity, Cardiovasc Ther, 31, 2013, 76-83.
  • K.Y. Xu, E.D.P. Campbell, S.S. Gill, R. Nesdole, R.J. Campbell, Impact of combination glaucoma therapies on beta-blocker exposure, J Glaucoma, 26, 2017, E107-E109.
  • A.V. Srinivasan, Propranolol: A 50-year historical perspective, Ann Indian Acad Neurol, 22, 2019, 21-26.
  • P.R. Kowey, Pharmacological effects of antiarrhythmic drugs, Arch Intern Med, 158, 1998, 325-332.
  • R. Mehvar, D.R. Brocks, Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans, J Pharm Pharm Sci, 4, 2001, 185-200.
  • W.H. Frishman, M. Alwarshetty, Beta-adrenergic blockers in systemic hypertension - Pharmacokinetic considerations related to the current guidelines, Clin Pharmacokinet, 41, 2002, 505-516.
  • B. Terhaag, Clinical Pharmacokinetics of the Beta-Receptor Blockers Propranolol and Talinolol. Z Klin Med, 44, 1989, 119-124.
  • A. Corletto, H. Frohlich, T. Tager, M. Hochadel, R. Zahn, C. Kilkowski, R. Winkler, J. Senges, H.A. Katus, L. Frankenstein, Beta blockers and chronic heart failure patients: Prognostic impact of a dose targeted beta blocker therapy vs. heart rate targeted strategy, Clin Res Cardiol, 107, 2018, 1040-1049.
  • B.G. Katzung, Basic and Clinical Pharmacology, fourteenth ed., M. Weitz and P. Boyle (eds), McGraw-Hill Education, New York, 2020.
  • J.B. Schwartz, D. Keefe, D.C. Harrison, Adverse effects of antiarrhythmic drugs, Drugs 21, 1981, 23-45.
  • W. Amjad, W. Qureshi, A. Farooq, U. Sohail, S. Khatoon, S. Pervaiz, P. Narra, S.M. Hasan, F. Ali, A. Ullah, S. Guttmann, Gastrointestinal side effects of antiarrhythmic medications: A review of current literature, Cureus, 9, 2017, e1646.
  • Z. Kun, Y. Shuai, T. Dongmei, Z. Yuyang, Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode, J Electroanal Chem, 709, 2013, 99-105.
  • N.A. Alarfaj, M.F. El‐Tohamy, Construction and validation of new electrochemical carbon nanotubes sensors for determination of acebutolol hydrochloride in pharmaceuticals and biological fluids, J Chin Chem Soc, 61, 2014, 910-920.
  • J.S. Choi, J.P. Burm, Pharmacokinetics of acebutolol and its main metabolite, diacetolol after oral administration of acebutolol in rabbits with carbon tetrachloride-induced hepatic failure, Arch Pharm Res, 25, 2002, 541-545.
  • R.R. Gaichore, A.K. Srivastava, Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and c-cyclodextrin, J Inc Phenom Macrocycl Chem, 78, 2014, 195-206.
  • M. Raj, P. Gupta, N.R. Goyal, Poly-Melamine film modified sensor for the sensitive and selective determination of propranolol, a β-blocker in biological fluids, J Electrochem Soc, 163, 2016, H388-H394.
  • P. Gupta, K.S. Yadav, B. Agrawal, N.R. Goyal, A novel graphene and conductive polymer modified pyrolyticgraphite sensor for determination of propranolol in biological fluids, Sens Actuators B Chem, 204, 2014, 791-798.
  • Z. Kun, H. Yi, Z. Chengyun, Y. Yue, Z. Shuliang, Y. Yuyang, Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassycarbon electrode, Electrochim Acta, 80, 2012, 405-412.
  • T. Alizadeh, L. Allahyari, Highly-selective determination of carcinogenic derivative ofpropranolol by using a carbon paste electrode incorporated withnano-sized propranolol-imprinted polymer, Electrochim Acta, 111, 2013, 663-673.
  • H.T. Purushothama, Y.A. Nayaka, Electrochemical determination of propranolol using reduced graphene oxide modified carbon paste electrode, Anal Bioanal Electrochem, 11, 2019, 1575-1589.
  • S.Z. Mohammadi, S. Tajik, H. Beitollahi, Electrochemical determination of propranolol by using modified screen-printed electrodes, Indian J Chem Technol, 27, 2020, 73-78.
  • T. Łuczak, A nanogold supported inorganic/organic hybrid 3D sensor for electrochemical quantification of propranolol-effective antagonist of β-adrenergic receptors, Ionics, 25, 2019, 5515-5525.
  • M.R. Nateghi, Synthesis of (Ti0.5V0.5)3C2 as novel electrocatalyst to modify carbon paste electrode for measurement of propranolol in real samples, Russ J Electrochem, 55, 2019, 106-115.
  • E.R. Sartori, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode, Talanta, 81, 2010, 1418-1424.
  • Z. Kun, C. Hongtao, Y. Yue, B. Zhihong, L. Fangzheng, L. Sanming, Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution, Ionics, 21, 2015, 1129-1140.
  • A.F. Al-Ghamdi, M.M. Hefnawy, A.A. Al-Majed, F.F. Belal, Development of square-wave adsorptive stripping voltammetric method for determination of acebutolol in pharmaceutical formulations and biological fluids, Chem Cent J, 6, 2012, 15.
  • A. Levent, Voltammetric behavior of acebutolol on pencil graphite electrode: highly sensitive determination in real samples by square‑wave anodic stripping voltammetry, J Iran Chem Soc, 14, 2017, 2495-2502.
  • A. Yamuna, P. Sundaresan, S.M. Chen, S.R.M. Sayed, T.W. Chen, S.P. Rwei, X. Liu, Electrochemical determination of acebutolol on the electrochemically pretreated screen printed carbon electrode, Int J Electrochem Sci, 14, 2019, 6168-6178.
  • A.M. Bagoji, S.M. Patil, T.S. Nandibewoor, Electroanalysis of cardioselective betaadrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism, Cogent Chem, 2, 2016, 1172393.
  • M. Silva, S. Morenta-Zarcero, D. Pérez-Quintanilla, I. Sierra, Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica, Sens Actuators B Chem, 283, 2019, 434-442.
There are 58 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Rewiev
Authors

Dilek Kul 0000-0002-8665-9417

Fatma Ağın 0000-0002-6973-4323

Publication Date June 23, 2020
Submission Date May 20, 2020
Acceptance Date June 11, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Kul, D., & Ağın, F. (2020). Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol. Turkish Journal of Analytical Chemistry, 2(1), 47-54.
AMA Kul D, Ağın F. Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol. TurkJAC. June 2020;2(1):47-54.
Chicago Kul, Dilek, and Fatma Ağın. “Voltammetric Analysis of Class II Antiarrhythmic Drugs Propranolol and Acebutolol”. Turkish Journal of Analytical Chemistry 2, no. 1 (June 2020): 47-54.
EndNote Kul D, Ağın F (June 1, 2020) Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol. Turkish Journal of Analytical Chemistry 2 1 47–54.
IEEE D. Kul and F. Ağın, “Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol”, TurkJAC, vol. 2, no. 1, pp. 47–54, 2020.
ISNAD Kul, Dilek - Ağın, Fatma. “Voltammetric Analysis of Class II Antiarrhythmic Drugs Propranolol and Acebutolol”. Turkish Journal of Analytical Chemistry 2/1 (June 2020), 47-54.
JAMA Kul D, Ağın F. Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol. TurkJAC. 2020;2:47–54.
MLA Kul, Dilek and Fatma Ağın. “Voltammetric Analysis of Class II Antiarrhythmic Drugs Propranolol and Acebutolol”. Turkish Journal of Analytical Chemistry, vol. 2, no. 1, 2020, pp. 47-54.
Vancouver Kul D, Ağın F. Voltammetric analysis of class II antiarrhythmic drugs propranolol and acebutolol. TurkJAC. 2020;2(1):47-54.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/