A Simple and High Throughput Methodology for Simultaneous Determination of Levodopa and Carbidopa
Year 2022,
Volume: 4 Issue: 2, 52 - 58, 29.12.2022
İrem Kırlangıç
,
Kemal Volkan Özdokur
,
Fatma Nil Ertas
Abstract
Parkinson's disease (PD) is a degenerative disorder of the central nervous system. The motor symptoms of PD disease result from the death of dopamine-generating cells in a region of the mid brain and the dopamine precursor levodopa (L-Dopa) is used for the treatment. Carbidopa (Car) is administered in association with L-Dopa in pharmaceutical formulation as an inhibitor on the decarboxylase activity. Thus, their simultaneous determination is of great importance because of their co-existence in pharmaceutical preparations. Present study deals with a simple method development for simultaneous voltammetric determination of L-Dopa and Car at a pencil graphite electrode (PGE) via monitoring the reduction peak of L-Dopa and the second oxidation peak of Car. The sensitivity of the method was found comparable to other methods depending on the sophisticated electrode modifications and the limits of detection were calculated as sub micromolar levels.
Supporting Institution
Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Project Number
2014 FEN 056
Thanks
Authors would like to thank Ege University Research Project (2014 FEN 056) for financial support.
References
- Siddiqui MR, Al Othman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry 2017; 10: 1409–1421. Doi: 10.1016/j.arabjc.2013. 04.016
- Lee MS and Kerns EH. LC/MS applications in drug development, Mass Spectrometry Reviews, 1999; 18: 187- 279. Doi: 10.1002/(SICI)1098-2787
- Ge L, Li SP, Lisak G, Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020; 1795: Article 112913. Doi: 10.1016/j.jpba.2019.112913
- Özkan SA, Uslu B, Aboul-Enein HY. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Critical Reviews in Analytical Chemistry, 2003; 33(3):155–181. Doi: 10.1080/713609162
- Uslu B, Ozkan SA, Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Anal. Lett. 2006; 40: 817-853. Doi: 10.1080/00032710701242121
- Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal, S. Voltammetric Techniques for the Assay of Pharmaceuticals--A Review. Anal. Biochemistry; 2011. 408: 179-196 DOI: 10.1016/j.ab.2010.09.027
- Antonini A, Yegin A, Preda C, Bergmann L, Poewe W. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson's disease patients; 12-month interim outcomes. Parkinsonism & Related Disorders 2014. 21 (3):231–35. http://dx.doi.org/10.1016/j.parkreldis. 2014. 12.012
- Ardakani MM, Khoshroo A. Nano composite system based on coumarin derivative–titanium dioxide nanoparticles and ionic liquid: Determination of levodopa and carbidopa in human serum and pharmaceutical formulations. Analytica Chimica Acta 2013; 798: 25–32. http://dx.doi.org/10.1016/j.aca.2013.08.045
- Bugamelli F, Marcheselli C, Barba E, Raggi MA. Determination of L-Dopa, carbidopa, 3-O-methyldopa and entacapone in human plasma by HPLC–ED. Journal of Pharmaceutical and Biomedical Analysis, 2011; 54: 562–567. Doi:10.1016/j.jpba.2010.09.042
- Ozdokur KV, Engin E, Yengin C, Ertas H, Ertas, FN. Determination of Carbidopa, Levodopa, and Droxidopa by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Analytical Letters, 2017; 51(1-2): 73-82. Doi: 10.1080/00032719.2017.1316283
- Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H. Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor. Biosensors and Bioelectronics, 2012; 35 (115) 75-81. Doi:10.1016/j.bios.2012.02.014
- 1Mohammadi SZ, Beitollahi H, Kaykhaii M, Mohammadizadeh N, Tajik S, Hosseinzadeh R. Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3] triazol-1-yl)-1-(naphthalen-2-yl) ethanone Measurement; 2020; 155: 107522. Doi: 10.1016/j.measurement.2020.107522
- Quintino MSM, Yamashita M, Angnes L. Voltammetric Studies and Determination of Levodopa and Carbidopa in Pharmaceutical Products. Electroanalysis, 2006; 18: 655-661. Doi: 10.1002/elan.200503445
- Wang Q, Das MR, Li M, Boukherroub R, Szunerits S. Voltammetric detection of L-Dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry, 2013; 93: 15–22. Doi: 10.1016/j.bioelechem.2012.03.004
- Zapata-Urzúa C, Pérez-Ortiza M, Bravo M, Olivieri AC, Álvarez-Lueje A. Simultaneous voltammetric determination of levodopa, carbidopa and benserazide in pharmaceuticals using multivariate calibration. Talanta, 2010; 82: 962–968. Doi: 10.1016/j.talanta.2010.05.071
- Beitollah Hadis, Goodarzian M, Khalilzadeh MA, Karimi-Maleh H, Hassanzadeh M, Tajbakhsh M, Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. Journal of Molecular Liquids, 2012, 173: 137–143. Doi: 10.1016/j.molliq.2012.06.026
- David JG, Popa DE, Buleandra M, Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. Journal of Analytical Methods in Chemistry, 2017;Article ID 1905968. Doi: 10.1155/2017/1905968
- Dehnavi A, Soleymanpour A. Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide. Microchemical Journal, 2020; 157: Article 104969. Doi: 10.1016/j.microc.2020.104969
- Liv L, Nakiboğlu N. Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode. Turkish Journal of Chemistry, 2016; 40: 412 – 421. Doi: 10.3906/kim-1507-64
- Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Electrochemical Genosensor Based on Colloidal Gold Nanoparticles for the Detection of Factor V Leiden Mutation Using Disposable Pencil Graphite Electrodes. Analytical Chemistry, 2003; 75 (9), 2181–2187. Doi: 10.1021/ac026212r
- Ardakani M. M., Ganjipour B., Beitollahi H., Amini M. K., Mirkhalaf F., Naeimi H., Barzoki M. N. Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: Application to the analysis of some real samples. Electrochimica Acta, 2011, 56: 9113– 9120. Doi:10.1016/j.electacta.2011.07.021
- Tajik S., Taher M. A., Beitollahi H. Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sensors and Actuators B, 2013, 188: 923– 930. http://dx.doi.org/10.1016/j.snb.2013.07.085
- Benvidi A., Firouzabadi A. D., Ardakani M. M., Mirjalili B. B. F., Zare R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. Journal of Electroanalytical Chemistry, 2015, 736: 22–29. http://dx.doi.org/10.1016/j.jelechem.2014.10.020
- Rastakhiz N., Beitollahi H., Kariminik A., Karimi F. Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Journal of Molecular Liquids, 2012, 172: 66–70. Doi:10.1016/j.molliq.2012.04.013
Year 2022,
Volume: 4 Issue: 2, 52 - 58, 29.12.2022
İrem Kırlangıç
,
Kemal Volkan Özdokur
,
Fatma Nil Ertas
Project Number
2014 FEN 056
References
- Siddiqui MR, Al Othman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry 2017; 10: 1409–1421. Doi: 10.1016/j.arabjc.2013. 04.016
- Lee MS and Kerns EH. LC/MS applications in drug development, Mass Spectrometry Reviews, 1999; 18: 187- 279. Doi: 10.1002/(SICI)1098-2787
- Ge L, Li SP, Lisak G, Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020; 1795: Article 112913. Doi: 10.1016/j.jpba.2019.112913
- Özkan SA, Uslu B, Aboul-Enein HY. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Critical Reviews in Analytical Chemistry, 2003; 33(3):155–181. Doi: 10.1080/713609162
- Uslu B, Ozkan SA, Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Anal. Lett. 2006; 40: 817-853. Doi: 10.1080/00032710701242121
- Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal, S. Voltammetric Techniques for the Assay of Pharmaceuticals--A Review. Anal. Biochemistry; 2011. 408: 179-196 DOI: 10.1016/j.ab.2010.09.027
- Antonini A, Yegin A, Preda C, Bergmann L, Poewe W. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson's disease patients; 12-month interim outcomes. Parkinsonism & Related Disorders 2014. 21 (3):231–35. http://dx.doi.org/10.1016/j.parkreldis. 2014. 12.012
- Ardakani MM, Khoshroo A. Nano composite system based on coumarin derivative–titanium dioxide nanoparticles and ionic liquid: Determination of levodopa and carbidopa in human serum and pharmaceutical formulations. Analytica Chimica Acta 2013; 798: 25–32. http://dx.doi.org/10.1016/j.aca.2013.08.045
- Bugamelli F, Marcheselli C, Barba E, Raggi MA. Determination of L-Dopa, carbidopa, 3-O-methyldopa and entacapone in human plasma by HPLC–ED. Journal of Pharmaceutical and Biomedical Analysis, 2011; 54: 562–567. Doi:10.1016/j.jpba.2010.09.042
- Ozdokur KV, Engin E, Yengin C, Ertas H, Ertas, FN. Determination of Carbidopa, Levodopa, and Droxidopa by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Analytical Letters, 2017; 51(1-2): 73-82. Doi: 10.1080/00032719.2017.1316283
- Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H. Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor. Biosensors and Bioelectronics, 2012; 35 (115) 75-81. Doi:10.1016/j.bios.2012.02.014
- 1Mohammadi SZ, Beitollahi H, Kaykhaii M, Mohammadizadeh N, Tajik S, Hosseinzadeh R. Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3] triazol-1-yl)-1-(naphthalen-2-yl) ethanone Measurement; 2020; 155: 107522. Doi: 10.1016/j.measurement.2020.107522
- Quintino MSM, Yamashita M, Angnes L. Voltammetric Studies and Determination of Levodopa and Carbidopa in Pharmaceutical Products. Electroanalysis, 2006; 18: 655-661. Doi: 10.1002/elan.200503445
- Wang Q, Das MR, Li M, Boukherroub R, Szunerits S. Voltammetric detection of L-Dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry, 2013; 93: 15–22. Doi: 10.1016/j.bioelechem.2012.03.004
- Zapata-Urzúa C, Pérez-Ortiza M, Bravo M, Olivieri AC, Álvarez-Lueje A. Simultaneous voltammetric determination of levodopa, carbidopa and benserazide in pharmaceuticals using multivariate calibration. Talanta, 2010; 82: 962–968. Doi: 10.1016/j.talanta.2010.05.071
- Beitollah Hadis, Goodarzian M, Khalilzadeh MA, Karimi-Maleh H, Hassanzadeh M, Tajbakhsh M, Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. Journal of Molecular Liquids, 2012, 173: 137–143. Doi: 10.1016/j.molliq.2012.06.026
- David JG, Popa DE, Buleandra M, Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. Journal of Analytical Methods in Chemistry, 2017;Article ID 1905968. Doi: 10.1155/2017/1905968
- Dehnavi A, Soleymanpour A. Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide. Microchemical Journal, 2020; 157: Article 104969. Doi: 10.1016/j.microc.2020.104969
- Liv L, Nakiboğlu N. Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode. Turkish Journal of Chemistry, 2016; 40: 412 – 421. Doi: 10.3906/kim-1507-64
- Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Electrochemical Genosensor Based on Colloidal Gold Nanoparticles for the Detection of Factor V Leiden Mutation Using Disposable Pencil Graphite Electrodes. Analytical Chemistry, 2003; 75 (9), 2181–2187. Doi: 10.1021/ac026212r
- Ardakani M. M., Ganjipour B., Beitollahi H., Amini M. K., Mirkhalaf F., Naeimi H., Barzoki M. N. Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: Application to the analysis of some real samples. Electrochimica Acta, 2011, 56: 9113– 9120. Doi:10.1016/j.electacta.2011.07.021
- Tajik S., Taher M. A., Beitollahi H. Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sensors and Actuators B, 2013, 188: 923– 930. http://dx.doi.org/10.1016/j.snb.2013.07.085
- Benvidi A., Firouzabadi A. D., Ardakani M. M., Mirjalili B. B. F., Zare R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. Journal of Electroanalytical Chemistry, 2015, 736: 22–29. http://dx.doi.org/10.1016/j.jelechem.2014.10.020
- Rastakhiz N., Beitollahi H., Kariminik A., Karimi F. Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Journal of Molecular Liquids, 2012, 172: 66–70. Doi:10.1016/j.molliq.2012.04.013