Research Article
BibTex RIS Cite

Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis

Year 2022, Volume: 4 Issue: 2, 123 - 131, 29.12.2022
https://doi.org/10.51435/turkjac.1196786

Abstract

Plants include compounds having high antioxidant activity such as flavonoids, phenolics, and carotenoids. Antioxidant defense mechanisms play an important role in the prevention and treatment of oxidative stress diseases in humans. In the present study, the flower and leaf parts of Linum mucronatum subsp. armenum were extracted in five different solvents. The antioxidant activities of the extracts were determine using six antioxidant activity determination assays (Iron (III) reducing/antioxidant power (FRAP), DPPH radical scavenging activity, copper (II) reducing antioxidant activity (CUPRAC), ABTS radical scavenging capacity, total flavonoid content and total phenolic content). While, the methanol extract showed the highest activity for the flower part, ethanol extracts of leaf part showed the highest antioxidant activity in the DPPH, FRAP and CUPRAC tests. The highest activity values in both flower and leaf parts was measured in acetone extract with SC50=0.287 mg/mL and (SC50=0.163 mg/mL in ABTS test, respectively. Lowest activity values of solvent extracts were measured in hexane extracts in all tests. Phenolic compounds of the plant were identified using LC-MS/MS. These phenolics are kaempferol, vanillin, protecatechuic acid, caffeic acid, p-coumaric acid, p-OH benzoic acid, salicylic acid, quercetin and rutin. The leaf and flower parts have α-glucosidase enzyme inhibitor effect. It was determined that the leaf part of the plant (IC50=4.533 mg/mL) have higher enzyme inhibition than in the flower (IC50=6.096 mg/mL). As a result, it was determined that the plant showed the biological activity. The results will contribute to the studies on the biological activity of the other plant.

Supporting Institution

Gümüşhane University Scientific Research Projects Coordination Unit

Project Number

21.E0102.07.02

Thanks

This study was supported by Gümüşhane University Scientific Research Projects Coordination Unit (GÜBAP), Project no: 21.E0102.07.02

References

  • [1] J. Finaud, G. Lac, E. Filaire, Oxidative stress, Sports Med, 36(4), 2006. 327-358.
  • [2] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev, 4(8), 2010, 118-126.
  • [3] L. Gate, J. Paul, G.N. Ba, K.D Tew, H. Tapiero, Oxidative stress induced in pathologies: the role of antioxidants, Biomed Pharmacother, 53(4), 1999, 169-180.
  • [4] Ş. Gökpınar, T. Koray, E. Akçiçek, T. Göksan, Y. Durmaz, Algal Antioksidanlar, E U Su Ürünleri Dergisi, 23, 2006, 85–89 (In Turkish).
  • [5] V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, E.J.Calabrese, M.P. Mattson, 2010. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders, Antioxid Redox Signal, 13(11), 2010, 1763-1811.
  • [6] A.H. Goldfarb, Antioxidants: role of supplementation to prevent exercise-induced oxidative stress, Med Sci Sports Exerc, 25(2), 1993, 232-236.
  • [7] L.A.,Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, Int J Biomed Sci, 4(2), 2008. 89-96.
  • [8] S.E. Fernández-Bravo, (2022). Antioxidants in Dentistry: Oxidative Stress and Periodontal Diseases, Lipid Oxidation in Food and Biological Systems, Editor: C. Bravo-Diaz, 2022, Switzerland, Springer Cham.
  • [9] F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review, J Funct Foods, 18, 2015, 820-897.
  • [10] V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, N. Dhaka, Potential applications of antioxidants–A review, J Pharm Res, 7(9), 2013, 828-835.
  • [11] M. López-Pedrouso, J.M. Lorenzo, D. Franco, Advances in natural antioxidants for food improvement. Antioxidants, 11(9), 2022. 1825.
  • [12] D.E. Pratt, Natural Antioxidants From Plant Material, Phenolic Compounds in Food and Their Effects on Health II, Editors: M.T. Huang, C.T. Ho, C.Y. Lee, 1992, USA, ‎ American Chemical Society.
  • [13] Z. Akar, Ç. Demir, O. Alkan, Z. Can, B. Akar, LC–MS/MS and RP–HPLC–UV analysis and antioxidant activities of Arum italicum Miller edible and nonedible tuber parts, J Anatol Environ Animal Sci, 6(3), 2021, 294-301.
  • [14] C. Nirmala, M.S. Bisht, H.K. Bajwa, O. Santosh, Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry, Trends Food Sci Technol, 77, 2018. 91-99.
  • [15] S. Kumar, S. Narwal, V. Kumar, O. Prakash, α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Phcog Rev, 5(9), 2011. 19-29
  • [16] R. Tundis, M.R. Loizzo, F. Menichini, Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini-Rev Me. Chem, 10(4), 2010, 315-331.
  • [17] Z. Akar, Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L, Saudi J Biol Sci, 28(11), 2021, 6639-6644.
  • [18] W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci Technol, 28(1), 1995, 25-30.
  • [19] I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal Biochem, 239(1), 1996, 70-76.
  • [20] R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J Agric Food Chem, 52(26), 2004, 7970-7981.
  • [21] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 26(9-10), (1999, 1231-1237.
  • [22] K. Slinkard, V.L. Singleton, Total phenol analysis: automation and comparison with manual methods, Am J Enol Vitic, 28(1), 1977, 49-55.
  • [23] L. R., Fukumoto, G. Mazza, Assessing antioxidant and prooxidant activities of phenolic compounds, J Agric Food Chem, 48(8), (2000). 3597-3604.
  • [24] Z. Yu, Y. Yin, W. Zhao, J. Liu, F. Chen, Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase, Food Chem, 135(3), 2012 2078–2085.
  • [25] M. Loi, C. Paciolla, Plant antioxidants for food safety and quality: Exploring new trends of research, Antioxidants, 10(6), 2021, 972.
  • [26] D. Dziki, R. Różyło, U. Gawlik-Dziki, M. Świeca, Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds, Trends Food Sci Tech, 40(1), ,2014, 48-61.
  • [27] W. Fedeniuk, R.C.G. Biliaderis, Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage, J Agric Food Chem, 42(2), 1994, 240-247.
  • [28] A.J. Jhala, L.M. Hall, Flax (Linum usitatissimum L.): current uses and future applications, Aust. J. Basic Appl. Sci, 4(9), 2010, 4304-4312.
  • [29] X. Li, J. Li, S. Dong, Y. Li, L. Wei, C. Zhao, J. Li, X. Liu, Y. Wang, Effects of germination on tocopherol, secoisolarlciresinol diglucoside, cyanogenic glycosides and antioxidant activities in flaxseed (Linum usitatissimum L.), Int. J Food Sci Technol, 54(7), 2019, 2346-2354.
  • [30] H. Nawaz, A.M. Shad, N. Rehman, H. Andaleeb, N. Ullah, Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds, Brazilian J. Pharm. Sci, 56, 2020, e17129.
  • [31] G. Yıldız, C. Aktürk, M. Özerkan, Ö. Yılmaz, Free radical scavenging activity and antioxidant contents of Linum arboreum L. (Linaceae). KSU J Agric Nat, 22 (1), 2019, 16-23.
  • [32] Z. Sultan, Linum arboreum üzerinde farmakognozik çalışmalar, Master Thesis, Ankara University, Institute of Health Sciences, 2020.
  • [33] S. Sreelatha, P.R. Padma, Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity, Plant Foods Hum Nutr, 64(4), 2009, 303-311.
  • [34] S. Benvenuti, E. Bortolotti, R. Maggini, Antioxidant power, anthocyanin content and organoleptic performance of edible flowers, Scientia Hortic, 199, 2016, 170-177.
  • [35] N. Schultheiss, M. Roe, SX. Boerrigter, Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs, Cryst Eng Comm, 13(2), ,2011, 611-619.
  • [36] Z. Lou, H., Wang, S. Rao, J. Sun, C. Ma, J. Li, p-Coumaric acid kills bacteria through dual damage mechanisms, Food Control, 25(2), 2012, 550-554.
  • [37] H. Boz, p‐Coumaric acid in cereals: presence, antioxidant and antimicrobial effects, Int J Food Sci, 50(11), 2015, 2323-2328.
  • [38] M. Matejczyk, R. Swislocka, M. Kalinowska, G. Widerskp, W. Lewandowsk, A. Jablonska-Trypuo, S.J. Rosochacki, In vıtro evaluatıon of bıologıcal actıvıty of cınnamıc, caffeıc, ferulıc and chlorogenıc acıds wıth use of escherıchıa colı k-12 reca: gfp bıosensor strain, Acta Pol Pharm, 74(3), (2017). 801-808.
  • [39] Y.C. Boo, p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects, Antioxidants, 8(8), 2019, 275.
  • [40] H. Hosseinzadeh, M. Nassiri-Asl, Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid, J Endocrinol Invest, 37(9), 2014, 783-788.
  • [41] A. Ghorbani, Mechanisms of antidiabetic effects of flavonoid rutin, Biomed Pharmacother, 96, 2017, 305-312.
  • [42] C. Magnani, V.L.B, Isaac, M.A. Correa,. H.R.N. Salgado, Caffeic acid: a review of its potential use in medications and cosmetics, Anal Methods, 6(10), 2014, 3203-3210.
  • [43] F. Armutcu, S. Akyol, S. Ustunsoy, F.F. Turan, Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects, Exp Ther Med, 9(5), 2015, 1582-1588.
  • [44] A.K, Sinha, U.K. Sharma, N. Sharma, A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, Int J Food Sci Nutr, 59(4), 2008, 299-326.
  • [45] H. Han, H. Yılmaz, I. Gülçin, Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS, Rec Nat Prod, 12(4), 2018, 397-402.
  • [46] S. Kermasha, M.N. Eskin, Selected industrial enzymes, Enzymes, Editors: S. Kermasha, M.N. Eskin, 2021, Academic Press.
  • [47] C. López-Otín, J.S. Bond, Proteases: multifunctional enzymes in life and disease, J Biol Chem, 283(45), 2008, 30433-30437.
  • [48] W. Benalla, S. Bellahcen, M. Bnouham, Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors, Curr Diabetes Rev, 6(4), 2010, 247-254.
  • [49] S. Ganesan, S. Raja, P. Sampathkumar, K. Sivakumar, T. Thangaradjou, Isolation and screening of a-glucosidase enzyme inhibitor producing marine actinobacteria, Afr J Microbiol Res, 5(21), 2011, 3437-3445.
  • [50] C., Wei, K., Thakur, D., Liu, J. Zhang, Z. Wei, Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products, Food Chem, 263, 2018 186-193.
  • [51] M.A. Fieldes, K.E. Gerhardt, Developmental and genetic regulation of ß-glucosidase (linamarase) activity in flax seedlings, J Plant Physiol, 158, 2001, 977-989.
  • [52] M. Bhat, S.S. Zinjarde, S.Y. Bhargava, A.R. Kumar, Joshi, B.N. Antidiabetic Indian plants: a good source of potent amylase inhibitors. Evid.-Based Complement Altern Med., 2011, 810207.
  • [53] I.L. Lawag, A.M. Aguinaldo, S. Naheed, M. Mosihuzzaman, α-Glucosidase inhibitory activity of selected Philippine plants, J Ethnopharmacol, 144(1), 2012, 217-219.
  • [54] S.T. Assefa, E.Y. Yang, S.Y. Chae, M. Song, J. Lee, M.C. Cho, S. Jang, Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables, Plants, 9(1), 2019, 2.
  • [55] K. Pei, J. Ou, J. Huang, S. Ou, p‐Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities, J Sci Food Agric, 96(9), 2016, 2952-2962.
  • [56] G. Oboh, O.M. Agunloye, S.A. Adefegha, A.J. Akinyemi, A.O. Ademiluyi, Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study, J Basic Clin Physiol Pharmacol, 26(2), 2015, 165-170.
  • [57] S. Dubey, A. Ganeshpurkar, A. Ganeshpurkar, D Bansal, N. Dubey, Glycolytic enzyme inhibitory and antiglycation potential of rutin, Future J Pharm Sci, 3(2), 2017, 158-162.
Year 2022, Volume: 4 Issue: 2, 123 - 131, 29.12.2022
https://doi.org/10.51435/turkjac.1196786

Abstract

Project Number

21.E0102.07.02

References

  • [1] J. Finaud, G. Lac, E. Filaire, Oxidative stress, Sports Med, 36(4), 2006. 327-358.
  • [2] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev, 4(8), 2010, 118-126.
  • [3] L. Gate, J. Paul, G.N. Ba, K.D Tew, H. Tapiero, Oxidative stress induced in pathologies: the role of antioxidants, Biomed Pharmacother, 53(4), 1999, 169-180.
  • [4] Ş. Gökpınar, T. Koray, E. Akçiçek, T. Göksan, Y. Durmaz, Algal Antioksidanlar, E U Su Ürünleri Dergisi, 23, 2006, 85–89 (In Turkish).
  • [5] V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, E.J.Calabrese, M.P. Mattson, 2010. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders, Antioxid Redox Signal, 13(11), 2010, 1763-1811.
  • [6] A.H. Goldfarb, Antioxidants: role of supplementation to prevent exercise-induced oxidative stress, Med Sci Sports Exerc, 25(2), 1993, 232-236.
  • [7] L.A.,Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, Int J Biomed Sci, 4(2), 2008. 89-96.
  • [8] S.E. Fernández-Bravo, (2022). Antioxidants in Dentistry: Oxidative Stress and Periodontal Diseases, Lipid Oxidation in Food and Biological Systems, Editor: C. Bravo-Diaz, 2022, Switzerland, Springer Cham.
  • [9] F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review, J Funct Foods, 18, 2015, 820-897.
  • [10] V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, N. Dhaka, Potential applications of antioxidants–A review, J Pharm Res, 7(9), 2013, 828-835.
  • [11] M. López-Pedrouso, J.M. Lorenzo, D. Franco, Advances in natural antioxidants for food improvement. Antioxidants, 11(9), 2022. 1825.
  • [12] D.E. Pratt, Natural Antioxidants From Plant Material, Phenolic Compounds in Food and Their Effects on Health II, Editors: M.T. Huang, C.T. Ho, C.Y. Lee, 1992, USA, ‎ American Chemical Society.
  • [13] Z. Akar, Ç. Demir, O. Alkan, Z. Can, B. Akar, LC–MS/MS and RP–HPLC–UV analysis and antioxidant activities of Arum italicum Miller edible and nonedible tuber parts, J Anatol Environ Animal Sci, 6(3), 2021, 294-301.
  • [14] C. Nirmala, M.S. Bisht, H.K. Bajwa, O. Santosh, Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry, Trends Food Sci Technol, 77, 2018. 91-99.
  • [15] S. Kumar, S. Narwal, V. Kumar, O. Prakash, α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Phcog Rev, 5(9), 2011. 19-29
  • [16] R. Tundis, M.R. Loizzo, F. Menichini, Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini-Rev Me. Chem, 10(4), 2010, 315-331.
  • [17] Z. Akar, Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L, Saudi J Biol Sci, 28(11), 2021, 6639-6644.
  • [18] W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci Technol, 28(1), 1995, 25-30.
  • [19] I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal Biochem, 239(1), 1996, 70-76.
  • [20] R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J Agric Food Chem, 52(26), 2004, 7970-7981.
  • [21] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 26(9-10), (1999, 1231-1237.
  • [22] K. Slinkard, V.L. Singleton, Total phenol analysis: automation and comparison with manual methods, Am J Enol Vitic, 28(1), 1977, 49-55.
  • [23] L. R., Fukumoto, G. Mazza, Assessing antioxidant and prooxidant activities of phenolic compounds, J Agric Food Chem, 48(8), (2000). 3597-3604.
  • [24] Z. Yu, Y. Yin, W. Zhao, J. Liu, F. Chen, Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase, Food Chem, 135(3), 2012 2078–2085.
  • [25] M. Loi, C. Paciolla, Plant antioxidants for food safety and quality: Exploring new trends of research, Antioxidants, 10(6), 2021, 972.
  • [26] D. Dziki, R. Różyło, U. Gawlik-Dziki, M. Świeca, Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds, Trends Food Sci Tech, 40(1), ,2014, 48-61.
  • [27] W. Fedeniuk, R.C.G. Biliaderis, Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage, J Agric Food Chem, 42(2), 1994, 240-247.
  • [28] A.J. Jhala, L.M. Hall, Flax (Linum usitatissimum L.): current uses and future applications, Aust. J. Basic Appl. Sci, 4(9), 2010, 4304-4312.
  • [29] X. Li, J. Li, S. Dong, Y. Li, L. Wei, C. Zhao, J. Li, X. Liu, Y. Wang, Effects of germination on tocopherol, secoisolarlciresinol diglucoside, cyanogenic glycosides and antioxidant activities in flaxseed (Linum usitatissimum L.), Int. J Food Sci Technol, 54(7), 2019, 2346-2354.
  • [30] H. Nawaz, A.M. Shad, N. Rehman, H. Andaleeb, N. Ullah, Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds, Brazilian J. Pharm. Sci, 56, 2020, e17129.
  • [31] G. Yıldız, C. Aktürk, M. Özerkan, Ö. Yılmaz, Free radical scavenging activity and antioxidant contents of Linum arboreum L. (Linaceae). KSU J Agric Nat, 22 (1), 2019, 16-23.
  • [32] Z. Sultan, Linum arboreum üzerinde farmakognozik çalışmalar, Master Thesis, Ankara University, Institute of Health Sciences, 2020.
  • [33] S. Sreelatha, P.R. Padma, Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity, Plant Foods Hum Nutr, 64(4), 2009, 303-311.
  • [34] S. Benvenuti, E. Bortolotti, R. Maggini, Antioxidant power, anthocyanin content and organoleptic performance of edible flowers, Scientia Hortic, 199, 2016, 170-177.
  • [35] N. Schultheiss, M. Roe, SX. Boerrigter, Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs, Cryst Eng Comm, 13(2), ,2011, 611-619.
  • [36] Z. Lou, H., Wang, S. Rao, J. Sun, C. Ma, J. Li, p-Coumaric acid kills bacteria through dual damage mechanisms, Food Control, 25(2), 2012, 550-554.
  • [37] H. Boz, p‐Coumaric acid in cereals: presence, antioxidant and antimicrobial effects, Int J Food Sci, 50(11), 2015, 2323-2328.
  • [38] M. Matejczyk, R. Swislocka, M. Kalinowska, G. Widerskp, W. Lewandowsk, A. Jablonska-Trypuo, S.J. Rosochacki, In vıtro evaluatıon of bıologıcal actıvıty of cınnamıc, caffeıc, ferulıc and chlorogenıc acıds wıth use of escherıchıa colı k-12 reca: gfp bıosensor strain, Acta Pol Pharm, 74(3), (2017). 801-808.
  • [39] Y.C. Boo, p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects, Antioxidants, 8(8), 2019, 275.
  • [40] H. Hosseinzadeh, M. Nassiri-Asl, Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid, J Endocrinol Invest, 37(9), 2014, 783-788.
  • [41] A. Ghorbani, Mechanisms of antidiabetic effects of flavonoid rutin, Biomed Pharmacother, 96, 2017, 305-312.
  • [42] C. Magnani, V.L.B, Isaac, M.A. Correa,. H.R.N. Salgado, Caffeic acid: a review of its potential use in medications and cosmetics, Anal Methods, 6(10), 2014, 3203-3210.
  • [43] F. Armutcu, S. Akyol, S. Ustunsoy, F.F. Turan, Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects, Exp Ther Med, 9(5), 2015, 1582-1588.
  • [44] A.K, Sinha, U.K. Sharma, N. Sharma, A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, Int J Food Sci Nutr, 59(4), 2008, 299-326.
  • [45] H. Han, H. Yılmaz, I. Gülçin, Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS, Rec Nat Prod, 12(4), 2018, 397-402.
  • [46] S. Kermasha, M.N. Eskin, Selected industrial enzymes, Enzymes, Editors: S. Kermasha, M.N. Eskin, 2021, Academic Press.
  • [47] C. López-Otín, J.S. Bond, Proteases: multifunctional enzymes in life and disease, J Biol Chem, 283(45), 2008, 30433-30437.
  • [48] W. Benalla, S. Bellahcen, M. Bnouham, Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors, Curr Diabetes Rev, 6(4), 2010, 247-254.
  • [49] S. Ganesan, S. Raja, P. Sampathkumar, K. Sivakumar, T. Thangaradjou, Isolation and screening of a-glucosidase enzyme inhibitor producing marine actinobacteria, Afr J Microbiol Res, 5(21), 2011, 3437-3445.
  • [50] C., Wei, K., Thakur, D., Liu, J. Zhang, Z. Wei, Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products, Food Chem, 263, 2018 186-193.
  • [51] M.A. Fieldes, K.E. Gerhardt, Developmental and genetic regulation of ß-glucosidase (linamarase) activity in flax seedlings, J Plant Physiol, 158, 2001, 977-989.
  • [52] M. Bhat, S.S. Zinjarde, S.Y. Bhargava, A.R. Kumar, Joshi, B.N. Antidiabetic Indian plants: a good source of potent amylase inhibitors. Evid.-Based Complement Altern Med., 2011, 810207.
  • [53] I.L. Lawag, A.M. Aguinaldo, S. Naheed, M. Mosihuzzaman, α-Glucosidase inhibitory activity of selected Philippine plants, J Ethnopharmacol, 144(1), 2012, 217-219.
  • [54] S.T. Assefa, E.Y. Yang, S.Y. Chae, M. Song, J. Lee, M.C. Cho, S. Jang, Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables, Plants, 9(1), 2019, 2.
  • [55] K. Pei, J. Ou, J. Huang, S. Ou, p‐Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities, J Sci Food Agric, 96(9), 2016, 2952-2962.
  • [56] G. Oboh, O.M. Agunloye, S.A. Adefegha, A.J. Akinyemi, A.O. Ademiluyi, Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study, J Basic Clin Physiol Pharmacol, 26(2), 2015, 165-170.
  • [57] S. Dubey, A. Ganeshpurkar, A. Ganeshpurkar, D Bansal, N. Dubey, Glycolytic enzyme inhibitory and antiglycation potential of rutin, Future J Pharm Sci, 3(2), 2017, 158-162.
There are 57 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Fatma Kılıç 0000-0002-3332-4218

Zeynep Akar 0000-0001-9262-8070

Project Number 21.E0102.07.02
Early Pub Date December 23, 2022
Publication Date December 29, 2022
Submission Date October 31, 2022
Acceptance Date November 30, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Kılıç, F., & Akar, Z. (2022). Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis. Turkish Journal of Analytical Chemistry, 4(2), 123-131. https://doi.org/10.51435/turkjac.1196786
AMA Kılıç F, Akar Z. Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis. TurkJAC. December 2022;4(2):123-131. doi:10.51435/turkjac.1196786
Chicago Kılıç, Fatma, and Zeynep Akar. “Determination of LC-MS/MS Phenolic Profile, Antioxidant and α-Glucosidase Enzyme Inhibition Activities of Linum Mucronatum Bertol. Subsp. Armenum (Bordz.) P.H.Davis”. Turkish Journal of Analytical Chemistry 4, no. 2 (December 2022): 123-31. https://doi.org/10.51435/turkjac.1196786.
EndNote Kılıç F, Akar Z (December 1, 2022) Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis. Turkish Journal of Analytical Chemistry 4 2 123–131.
IEEE F. Kılıç and Z. Akar, “Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis”, TurkJAC, vol. 4, no. 2, pp. 123–131, 2022, doi: 10.51435/turkjac.1196786.
ISNAD Kılıç, Fatma - Akar, Zeynep. “Determination of LC-MS/MS Phenolic Profile, Antioxidant and α-Glucosidase Enzyme Inhibition Activities of Linum Mucronatum Bertol. Subsp. Armenum (Bordz.) P.H.Davis”. Turkish Journal of Analytical Chemistry 4/2 (December 2022), 123-131. https://doi.org/10.51435/turkjac.1196786.
JAMA Kılıç F, Akar Z. Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis. TurkJAC. 2022;4:123–131.
MLA Kılıç, Fatma and Zeynep Akar. “Determination of LC-MS/MS Phenolic Profile, Antioxidant and α-Glucosidase Enzyme Inhibition Activities of Linum Mucronatum Bertol. Subsp. Armenum (Bordz.) P.H.Davis”. Turkish Journal of Analytical Chemistry, vol. 4, no. 2, 2022, pp. 123-31, doi:10.51435/turkjac.1196786.
Vancouver Kılıç F, Akar Z. Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis. TurkJAC. 2022;4(2):123-31.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/