Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 2, 143 - 150, 29.12.2023
https://doi.org/10.51435/turkjac.1390923

Abstract

References

  • B. Orlikova, N. Legrand, J. Dicato, M. Diederich, Anti-inflammatory and anticancer drugs from nature. In Advances in Nutrition and Cancer, 3, 2014,123–14.
  • H. Barakat, Amygdalin as a plant-based bioactive constituent: A Mini-Review on Intervention with Gut Microbiota, Anticancer Mechanisms, Bioavailability, and Microencapsulation. Proceedings, 15, 2020, 61.
  • A. Kolesarova, S. Baldovska, S. Roychoudhury S, The multiple actions of amygdalin on cellular processes with an emphasis on female reproduction. Pharm, 14(9), 2021, 881.
  • M. Andrianarison, L. Tika, I.M. Ranaivo, M. Razakanaivo, L.S. Ramarozatovo, F. Rafaramino, R.F. Rapelanoro, Les cancers cutanés à Madagascar: Où en sommes-nous? Pan Afr. Med, 2019, 34, 167.
  • G. Viorica-Mirela, C. Socaciu, I. Jianu, R. Florica, F. Florinela, Identification et évaluation quantitative de l’amygdaline des huiles et noyaux d’abricot, de prune et de pêche. Bullettin USAMV-CN, 62, 2006, 246–253.
  • X.B. Li, C.H. Liu, R. Zhang, X.T. Huang, Y.Y. Li, L. Han, M.L. Xu, S.Q. Mi, N.S. Wang, Determination and pharmacokinetics of amygdalin in rats by LC–MS-MS, J. Chromatogr Sci 52, 2014,476–481.
  • Z. Song, X. Xu, Advanced research on anti-tumor effects of amygdalin. J Cancer Res, 10 (1), 2014, 3–7.
  • H.K. Chang, M.S. Shin, H.Y. Yang, J.W. Lee, Y.S. Kim, M.H. Lee, J. Kim, K.H. Kim, C.J. Kim, Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol Pharm Bull, 29 (8), 2006,1597–602.
  • A. Moslehi, T. Komeili-movahed, M. Moslehi, Antioxidant effects of amygdalin on tunicamycin-induced endoplasmic reticulum stress in the mice liver: Cross talk between endoplasmic reticulum stress and oxidative stress. J Rep Pharm Sci, 8(2), 2019, 298–302.
  • J.C. Holland, Why patients sock unproven cancer remedies: a psychological perspective CA Cancer J Clin, 32 (1), 1982, 10–14. I. London-Shafir, S. Shafir, D. Shafir, Eisikowitch, Amygdalin in almond nectar and pollen e facts and possible roles. Plant Systematics and Evolution, 238, 2003, 87–95.
  • A.M.A. Adam, An in vitro study of amygdalin alone and complexed with Se (IV), Au (III), Ru (III), and V (III) ions: Structure, morphology, and pharmacology. J Molecular Struc, 1195, 2019, 43–57.
  • H.J. Park, S.H. Yoon, L.S. Han, L.T. Zheng, K.H. Jung, Y.K. Uhm, J.H. Lee, J.S. Jeong, W.S. Joo, S.V. Yim, J.H. Chung, S.P. Hong, Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J Gastroenterol, 11 (33), 2005, 5156–5161.
  • C. Zhou, L. Qian, H. Ma, X. Yu, Y. Zhang, Enhancement of amygdalin activated with β-d-glucosidase on HepG2 cells proliferation and apoptosis, Carbohydr Polym, 90, 2012, 516–523.
  • C.M. Henstridge, B.T. Hyman, T.L. Spires-Jones, Beyond the neuron–cellular interactions early in alzheimer disease pathogenesis. Nat Rev Neurosci, 20 (2), 2019, 94–108.
  • J.M. Long, D.M. Holtzman, Alzheimer disease: an update on pathobiology and treatment strategies. Cell, 2019, 179.
  • T. Taskin, M. Dogan, B.N. Yilmaz, I. Senkardes, Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis Agric Biotechnol, 27, 2020, 101670.
  • W.D. Chey, G.I. Leontiadis, C.W. Howden, S.F. Moss, ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol, 112 (2), 2017, 212–239. D. Oral, A. Yirün, P. Erkekoǧlu, Epigenetic and genetic changes caused by helicobacter pylori and their roles in gastric carcinogenesis. J Faculty Pharmaceu Ankara, 43(3): 2019, 285–308.
  • A. Saxena, A.M. Redman, X. Jiang, O. Lockridge, B.P. Doctor, Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chemico-Biol Interact, 36 (48), 1997,14642–14651.
  • G.L. Ellman, K.D. Courtney, R.M. V Andres Jr, Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem Pharmacol, 1961, 7–88.
  • C. Kantar, N. Baltas, O.K. Dereci, S. Şaşmaz, Urease and acetylcholinesterase enzyme inhibitor novel phthalonitrile azo compounds. Indian J Chem, 61 (11), 2022, 1188.
  • M.W. Weatherburn, Phenol-hypochlorite reaction fordetermination of ammonia. Anal Chem, 1967,39, 971–974.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Manner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 30, 2009, 2785–2791.
  • M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: An open chemical toolbox. J Cheminformatics, 2011, 3, 33.
  • Dassault Systèmes BIOVIA, Discovery studio modeling environment, Release 2017, San Diego: Dassault Systèmes, 2016.
  • I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal Biochem, 1996,239–70.
  • P. Molyneux, The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol, 2004,26, 211.
  • H.O. Tayeb, H.D. Yang, B.H. Price, F.I. Tarazi, Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Therapeu, 134(1), 2012, 8–25.
  • M. Farlow, F. Veloso, M. Moline, J. Yardley, E. Brand-Schieber, F. Bibbiani, H. Zou, T. Hsu, A. Satlin, Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol,2011, 11(1):57.
  • Y. Vahedi-Mazdabadi, E. Karimpour-Razkenari, T. Akbarzadeh, H. Lotfian, M. Toushih, N. Roshanravan, M. Saeedif, A. Ostadrahimi, Anti-cholinesterase and neuroprotective activities of sweet and bitter apricot kernels (prunus armeniaca L.). Iranian J Pharm Res, 19(4), 2020, 216–224.
  • Y. Cheng, C. Yang, J. Zhao, H.F. Tse, J. Rong, Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. J Nutr Biochem, 26, 2015,146–54.
  • C. Tohda, T. Tamura, K. Komatsu, Repair of amyloid β (25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res, 2003,990, 141–7.
  • A.A. Karaçelik, Phytochemical profiling, antioxidant activities and in vitro/in silico enzyme inhibitory potentials of apricot cultivars grown in Iğdır/Turkey. S Afr J Bot, 156, 2023, 257–267.
  • D. Chen, N. Oezguen, P. Urvil, C. Ferguson, S.M. Dann, T.C. Savidge, Regulation of protein-ligand binding affinity by hydrogen bond pairing. Scie Adv, 2(3), 2016, 1501240.
  • S. Raj, S. Sasidharan, V.K. Dubey, P. Saudagar, Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PloS one, 2019,14(8).
  • M.C. Garcia, E. Gonzalez-Garcia, R. Vasquez-Villanueva, M.L. Marina, Apricot and other Seed Stones: Amygdalin Content and the Potential to Obtain Antioxidant, Angiotensin I Converting Enzyme Inhibitor and Hypocholesterolemic Peptides. Food Funct, 7, 2016, 4693–4701.
  • S. Albogami, A. Hassan, N. Ahmed, A. Alnefaie, A. Alattas, L. Alquthami, A. Alharbi, Evaluation of the effective dose of amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. Peer J, 8, 2020, e9232.
  • P. Sushma, B. Jacob, R.T. Narendhirakannan, Evaluation of antioxidant and cytotoxicity properties of amygdalin extracted from prunus dulcis. Kongunadu Res J, 6, 2019, 8–12.
  • S. Zhang, Y. Zhang, C. Lv, J. Sun, Y. Zhao, Phenolic composition and antioxidant activity of different varieties of apricot kernels. Food Chem, 245, 2018, 1148–1156.
  • A.N. Yıldırım, B. San, F. Koyuncu, F. Yıldırım, Variability of phenolics, α-tocopherol and amygdalin contents of selected almond (Prunus amygdalus Batsch.) genotypes, J Food Agric Environ, 8 (1), 2010, 76–79.
  • H. Lehmane, A.N. Kohonou, A.P. Tchogou, R. Ba, D. Dah-Nouvlessounon, O. Didagbé, H. Sina, M. Senou, A. Adjanohoun, L. Baba-Moussa, Antioxidant, anti-inflammatory, and anti-cancer properties of amygdalin extracted from three cassava varieties cultivated in Benin. Molecules, 28(11), 4548, 2023.

Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin

Year 2023, Volume: 5 Issue: 2, 143 - 150, 29.12.2023
https://doi.org/10.51435/turkjac.1390923

Abstract

This study investigated that the acetylcholinesterase, urease enzyme inhibition and these enzymes molecular docking as well as antioxidant activity of commercially available amygdalin. While Amygdalin displayed effect anti-urease activity compared to acetohydroxamic acid but, anti-acetylcholine esterase activity a little ineffective compared to donepezil. The molecular docking was performed in order to check binding interactions between the amygdalin and the enzymes. DPPH and FRAP assays were preferred to determine the antioxidant activity. The antioxidant activity (3.39±0.33 µmol Fe2SO47H2O /g, SC50 18.74±0.72 mg/mL using the FRAP and DPPH assays, respectively. Amygdalin's in vitro and in vivo studies are needed for demonstrated that is a therapeutic agent for the treatment of various diseases.

References

  • B. Orlikova, N. Legrand, J. Dicato, M. Diederich, Anti-inflammatory and anticancer drugs from nature. In Advances in Nutrition and Cancer, 3, 2014,123–14.
  • H. Barakat, Amygdalin as a plant-based bioactive constituent: A Mini-Review on Intervention with Gut Microbiota, Anticancer Mechanisms, Bioavailability, and Microencapsulation. Proceedings, 15, 2020, 61.
  • A. Kolesarova, S. Baldovska, S. Roychoudhury S, The multiple actions of amygdalin on cellular processes with an emphasis on female reproduction. Pharm, 14(9), 2021, 881.
  • M. Andrianarison, L. Tika, I.M. Ranaivo, M. Razakanaivo, L.S. Ramarozatovo, F. Rafaramino, R.F. Rapelanoro, Les cancers cutanés à Madagascar: Où en sommes-nous? Pan Afr. Med, 2019, 34, 167.
  • G. Viorica-Mirela, C. Socaciu, I. Jianu, R. Florica, F. Florinela, Identification et évaluation quantitative de l’amygdaline des huiles et noyaux d’abricot, de prune et de pêche. Bullettin USAMV-CN, 62, 2006, 246–253.
  • X.B. Li, C.H. Liu, R. Zhang, X.T. Huang, Y.Y. Li, L. Han, M.L. Xu, S.Q. Mi, N.S. Wang, Determination and pharmacokinetics of amygdalin in rats by LC–MS-MS, J. Chromatogr Sci 52, 2014,476–481.
  • Z. Song, X. Xu, Advanced research on anti-tumor effects of amygdalin. J Cancer Res, 10 (1), 2014, 3–7.
  • H.K. Chang, M.S. Shin, H.Y. Yang, J.W. Lee, Y.S. Kim, M.H. Lee, J. Kim, K.H. Kim, C.J. Kim, Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol Pharm Bull, 29 (8), 2006,1597–602.
  • A. Moslehi, T. Komeili-movahed, M. Moslehi, Antioxidant effects of amygdalin on tunicamycin-induced endoplasmic reticulum stress in the mice liver: Cross talk between endoplasmic reticulum stress and oxidative stress. J Rep Pharm Sci, 8(2), 2019, 298–302.
  • J.C. Holland, Why patients sock unproven cancer remedies: a psychological perspective CA Cancer J Clin, 32 (1), 1982, 10–14. I. London-Shafir, S. Shafir, D. Shafir, Eisikowitch, Amygdalin in almond nectar and pollen e facts and possible roles. Plant Systematics and Evolution, 238, 2003, 87–95.
  • A.M.A. Adam, An in vitro study of amygdalin alone and complexed with Se (IV), Au (III), Ru (III), and V (III) ions: Structure, morphology, and pharmacology. J Molecular Struc, 1195, 2019, 43–57.
  • H.J. Park, S.H. Yoon, L.S. Han, L.T. Zheng, K.H. Jung, Y.K. Uhm, J.H. Lee, J.S. Jeong, W.S. Joo, S.V. Yim, J.H. Chung, S.P. Hong, Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J Gastroenterol, 11 (33), 2005, 5156–5161.
  • C. Zhou, L. Qian, H. Ma, X. Yu, Y. Zhang, Enhancement of amygdalin activated with β-d-glucosidase on HepG2 cells proliferation and apoptosis, Carbohydr Polym, 90, 2012, 516–523.
  • C.M. Henstridge, B.T. Hyman, T.L. Spires-Jones, Beyond the neuron–cellular interactions early in alzheimer disease pathogenesis. Nat Rev Neurosci, 20 (2), 2019, 94–108.
  • J.M. Long, D.M. Holtzman, Alzheimer disease: an update on pathobiology and treatment strategies. Cell, 2019, 179.
  • T. Taskin, M. Dogan, B.N. Yilmaz, I. Senkardes, Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis Agric Biotechnol, 27, 2020, 101670.
  • W.D. Chey, G.I. Leontiadis, C.W. Howden, S.F. Moss, ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol, 112 (2), 2017, 212–239. D. Oral, A. Yirün, P. Erkekoǧlu, Epigenetic and genetic changes caused by helicobacter pylori and their roles in gastric carcinogenesis. J Faculty Pharmaceu Ankara, 43(3): 2019, 285–308.
  • A. Saxena, A.M. Redman, X. Jiang, O. Lockridge, B.P. Doctor, Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chemico-Biol Interact, 36 (48), 1997,14642–14651.
  • G.L. Ellman, K.D. Courtney, R.M. V Andres Jr, Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem Pharmacol, 1961, 7–88.
  • C. Kantar, N. Baltas, O.K. Dereci, S. Şaşmaz, Urease and acetylcholinesterase enzyme inhibitor novel phthalonitrile azo compounds. Indian J Chem, 61 (11), 2022, 1188.
  • M.W. Weatherburn, Phenol-hypochlorite reaction fordetermination of ammonia. Anal Chem, 1967,39, 971–974.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Manner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 30, 2009, 2785–2791.
  • M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: An open chemical toolbox. J Cheminformatics, 2011, 3, 33.
  • Dassault Systèmes BIOVIA, Discovery studio modeling environment, Release 2017, San Diego: Dassault Systèmes, 2016.
  • I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal Biochem, 1996,239–70.
  • P. Molyneux, The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol, 2004,26, 211.
  • H.O. Tayeb, H.D. Yang, B.H. Price, F.I. Tarazi, Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Therapeu, 134(1), 2012, 8–25.
  • M. Farlow, F. Veloso, M. Moline, J. Yardley, E. Brand-Schieber, F. Bibbiani, H. Zou, T. Hsu, A. Satlin, Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol,2011, 11(1):57.
  • Y. Vahedi-Mazdabadi, E. Karimpour-Razkenari, T. Akbarzadeh, H. Lotfian, M. Toushih, N. Roshanravan, M. Saeedif, A. Ostadrahimi, Anti-cholinesterase and neuroprotective activities of sweet and bitter apricot kernels (prunus armeniaca L.). Iranian J Pharm Res, 19(4), 2020, 216–224.
  • Y. Cheng, C. Yang, J. Zhao, H.F. Tse, J. Rong, Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. J Nutr Biochem, 26, 2015,146–54.
  • C. Tohda, T. Tamura, K. Komatsu, Repair of amyloid β (25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res, 2003,990, 141–7.
  • A.A. Karaçelik, Phytochemical profiling, antioxidant activities and in vitro/in silico enzyme inhibitory potentials of apricot cultivars grown in Iğdır/Turkey. S Afr J Bot, 156, 2023, 257–267.
  • D. Chen, N. Oezguen, P. Urvil, C. Ferguson, S.M. Dann, T.C. Savidge, Regulation of protein-ligand binding affinity by hydrogen bond pairing. Scie Adv, 2(3), 2016, 1501240.
  • S. Raj, S. Sasidharan, V.K. Dubey, P. Saudagar, Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PloS one, 2019,14(8).
  • M.C. Garcia, E. Gonzalez-Garcia, R. Vasquez-Villanueva, M.L. Marina, Apricot and other Seed Stones: Amygdalin Content and the Potential to Obtain Antioxidant, Angiotensin I Converting Enzyme Inhibitor and Hypocholesterolemic Peptides. Food Funct, 7, 2016, 4693–4701.
  • S. Albogami, A. Hassan, N. Ahmed, A. Alnefaie, A. Alattas, L. Alquthami, A. Alharbi, Evaluation of the effective dose of amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. Peer J, 8, 2020, e9232.
  • P. Sushma, B. Jacob, R.T. Narendhirakannan, Evaluation of antioxidant and cytotoxicity properties of amygdalin extracted from prunus dulcis. Kongunadu Res J, 6, 2019, 8–12.
  • S. Zhang, Y. Zhang, C. Lv, J. Sun, Y. Zhao, Phenolic composition and antioxidant activity of different varieties of apricot kernels. Food Chem, 245, 2018, 1148–1156.
  • A.N. Yıldırım, B. San, F. Koyuncu, F. Yıldırım, Variability of phenolics, α-tocopherol and amygdalin contents of selected almond (Prunus amygdalus Batsch.) genotypes, J Food Agric Environ, 8 (1), 2010, 76–79.
  • H. Lehmane, A.N. Kohonou, A.P. Tchogou, R. Ba, D. Dah-Nouvlessounon, O. Didagbé, H. Sina, M. Senou, A. Adjanohoun, L. Baba-Moussa, Antioxidant, anti-inflammatory, and anti-cancer properties of amygdalin extracted from three cassava varieties cultivated in Benin. Molecules, 28(11), 4548, 2023.
There are 40 citations in total.

Details

Primary Language English
Subjects Instrumental Methods
Journal Section Research Articles
Authors

Zehra Can 0000-0002-9366-5110

Yakup Kara 0000-0003-3121-5023

Halil İbrahim Güler 0000-0002-7261-6790

Ceren Birinci 0000-0002-0167-6809

Sevgi Kolaylı 0000-0003-0437-6139

Publication Date December 29, 2023
Submission Date November 15, 2023
Acceptance Date December 16, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Can, Z., Kara, Y., Güler, H. İ., Birinci, C., et al. (2023). Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. Turkish Journal of Analytical Chemistry, 5(2), 143-150. https://doi.org/10.51435/turkjac.1390923
AMA Can Z, Kara Y, Güler Hİ, Birinci C, Kolaylı S. Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. TurkJAC. December 2023;5(2):143-150. doi:10.51435/turkjac.1390923
Chicago Can, Zehra, Yakup Kara, Halil İbrahim Güler, Ceren Birinci, and Sevgi Kolaylı. “Molecular Docking Study on Acetylcholinesterase and Urease Enzyme Inhibition Effects of Amygdalin”. Turkish Journal of Analytical Chemistry 5, no. 2 (December 2023): 143-50. https://doi.org/10.51435/turkjac.1390923.
EndNote Can Z, Kara Y, Güler Hİ, Birinci C, Kolaylı S (December 1, 2023) Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. Turkish Journal of Analytical Chemistry 5 2 143–150.
IEEE Z. Can, Y. Kara, H. İ. Güler, C. Birinci, and S. Kolaylı, “Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin”, TurkJAC, vol. 5, no. 2, pp. 143–150, 2023, doi: 10.51435/turkjac.1390923.
ISNAD Can, Zehra et al. “Molecular Docking Study on Acetylcholinesterase and Urease Enzyme Inhibition Effects of Amygdalin”. Turkish Journal of Analytical Chemistry 5/2 (December 2023), 143-150. https://doi.org/10.51435/turkjac.1390923.
JAMA Can Z, Kara Y, Güler Hİ, Birinci C, Kolaylı S. Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. TurkJAC. 2023;5:143–150.
MLA Can, Zehra et al. “Molecular Docking Study on Acetylcholinesterase and Urease Enzyme Inhibition Effects of Amygdalin”. Turkish Journal of Analytical Chemistry, vol. 5, no. 2, 2023, pp. 143-50, doi:10.51435/turkjac.1390923.
Vancouver Can Z, Kara Y, Güler Hİ, Birinci C, Kolaylı S. Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. TurkJAC. 2023;5(2):143-50.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/