Research Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 2, 97 - 101, 20.12.2024
https://doi.org/10.51435/turkjac.1514896

Abstract

References

  • S.N.R. Gajula, N. Nadimpalli, R. Sonti, Drug metabolic stability in early drug discovery to develop potential lead compounds, Drug Metab Rev, 53(3), 2021, 459-477.
  • P. Baranczewski, A. Stanczak, K. Sundberg, R. Svensson, A. Wallin, J. Jansson, et al., Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development, Pharmacol Rep, 58(4), 2006, 453.
  • R. Xu, M. Manuel, J. Cramlett, D.B. Kassel, A high throughput metabolic stability screening workflow with automated assessment of data quality in pharmaceutical industry, J Chromatogr A, 1217(10), 2010, 1616-1625.
  • K. Słoczyńska, A. Gunia-Krzyżak, P. Koczurkiewicz, K. Wójcik-Pszczoła, D. Żelaszczyk, J. Popiół, E. Pękala, Metabolic stability and its role in the discovery of new chemical entities, Acta Pharm, 69(3), 2019, 345-361.
  • Y. Li, Q. Meng, M. Yang, D. Liu, X. Hou, L. Tang, et al., Current trends in drug metabolism and pharmacokinetics, Acta Pharm Sin B, 9(6), 2019, 1113-1144.
  • G. Gross, Chapter 27 - Strategies for Enhancing Oral Bioavailability and Brain Penetration, The Practice of Medicinal Chemistry (Fourth Edition), C.G. Wermuth, D, Aldous, P. Raboisson, D. Rognan, 2015, Academic Press, Elsevier.
  • Z. Wang, E.Y.Q. Leow, H.Y. Moy, E.C.Y Chan, Advances in urinary biomarker research of synthetic cannabinoids, Adv Clin Chem, 115, 2023, 1-32.
  • V.B. Siramshetty, P. Shah, E. Kerns, K. Nguyen, K.R. Yu, M. Kabir, et al., Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models, Sci Rep, 10(1), 2020, 20713.
  • S. Ulenberg, T. Bączek, Metabolic stability studies of lead compounds supported by separation techniques and chemometrics analysis, J Sep Sci, 44(1), 2021, 373-386.
  • H.E. Sellitepe, J.M. Oh, İ.S. Doğan, S. Yıldırım, A.B. Aksel, G.S. Jeong, et al., Synthesis of N′-(4-/3-/2-/non-substitutedbenzylidene)-4-[(4-methylphenyl) sulfonyloxy]benzohydrazides and evaluation of their inhibitory activities against monoamine oxidases and β-secretase, Appl Sci, 11(13), 2021, 5830.
  • G.P. Coskun, H.E. Sellitepe, B. Kahveci, M. Ülgen, İ.S. Doğan, Formation of an N-oxide metabolite following metabolism of 1-(3-chlorobenzyl)[1,2,4]triazolo[4,3-a]quinoxaline by in vitro rat liver microsomal preparations, Acta Pharm Sci, 60(4), 2022, 437-449.
  • L. Olsen, M. Montefiori, K.P. Tran, F.S. Jørgensen, SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server, Bioinformatics, 35(17), 2019, 3174-3175.
  • W. Yu, X. He, K. Vanommeslaeghe, A.D. MacKerell Jr, Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations, J Comput Chem, 33(31), 2012, 2451-2468.
  • M. Lee, G. Celenza, B. Boggess, J. Blase, Q. Shi, M. Toth, et al., A potent gelatinase inhibitor with anti‐tumor‐invasive activity and its metabolic disposition, Chem Biol Drug Des, 73(2), 2009, 189-202.
  • Y. Jiao, X. Li, Y. Tang, Y. Peng, G. Chen, X. Wang, et al., Distribution and metabolism of daidzein and its benzene sulfonates in vivo (in mice) based on MALDI-TOF MSI, Front Pharmacol, 13, 2022, 918087.
  • G.P. Coşkun, E.G. Algın, J.C. Karakoç, B.T. Erbul, M. Ülgen, Formation of N-Oxide metabolites from isoniazid hydrazones of substituted benzaldehydes by hepatic washed pig microsomal preparations, J Res Pharm, 27(1), 2023, 241-250.
  • A. Mateeva, L. Peikova, M. Kondeva-Burdina, M. Georgieva, Development of new HPLC method for identification of metabolic degradation of N-pyrrolylhydrazide hydrazones with determined MAO-B activity in cellular cultures, Pharmacia, 69(1), 2022, 15–20.
  • A. Mateeva, M. Kondeva-Burdina, P. Nedialkov, L. Peikova, M. Georgieva, Development of hyphenated techniques and network identification approaches for biotransformational evaluation of promising antitubercular N-pyrrolyl hydrazide-hydrazone in isolated rat hepatocytes, Chromatographia, 86(6), 2023, 497-505.
  • A. Mateeva, M. Kondeva-Burdina, E. Mateev, P. Nedialkov, K. Lyubomirova, L. Peikova, et al., In silico and chromatographic methods for analysis of biotransformation of prospective neuroprotective pyrrole-based hydrazone in isolated rat hepatocytes, Molecules, 29(7), 2024, 1474.
  • J. Kalia, R.T. Raines, Hydrolytic stability of hydrazones and oximes, Angew Chem Int Ed, 47(39), 2008, 7523-7526.
  • P. Kovaříková, Z. Mrkvičková, J. Klimeš, Investigation of the stability of aromatic hydrazones in plasma and related biological material, J Pharm Biomed Anal, 47(2), 2008, 360-370.
  • D.K. Kölmel, E.T. Kool, Oximes and hydrazones in bioconjugation: mechanism and catalysis, Chem Rev, 117(15), 2017, 10358-10376.
  • A. Wojtuch, R. Jankowski, S. Podlewska, S, How can SHAP values help to shape metabolic stability of chemical compounds?, J Cheminf, 13, 2021, 1-20.
  • S.Q. Pantaleão, P.O. Fernandes, J.E. Gonçalves, V.G. Maltarollo, K.M. Honorio, Recent advances in the prediction of pharmacokinetics properties in drug design studies: a review, ChemMedChem, 17(1), 2022, e202100542.
  • J. Zhai, V.H. Man, B. Ji, L. Cai, J. Wang, Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism, Drug Discov Today, 2023, 103728.

Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide

Year 2024, Volume: 6 Issue: 2, 97 - 101, 20.12.2024
https://doi.org/10.51435/turkjac.1514896

Abstract

Metabolic stability, a key parameter in drug development, refers to a drug substance's resistance to metabolism. The failure rate can be significantly reduced by conducting metabolism studies for the drug candidate compound from the early stages. These studies are primarily carried out on in vitro microsomal enzymes, which play a crucial role in the process. Various analytical methods, predominantly liquid chromatography, can be used for analysis. In this context, we conducted metabolic stability studies of a hydrazone-sulfonate derivative compound previously synthesized by our group, the biological activity of which was investigated. Metabolic stability was determined by LC-MS/MS on rat microsomes in vitro. Analyses were performed at 0., 5., 10., 15, 30, and 60. minutes during incubation. The analysis revealed that the stability of the compound was highly cofactor-dependent, maintaining its stability without cofactor and in a buffer medium.

References

  • S.N.R. Gajula, N. Nadimpalli, R. Sonti, Drug metabolic stability in early drug discovery to develop potential lead compounds, Drug Metab Rev, 53(3), 2021, 459-477.
  • P. Baranczewski, A. Stanczak, K. Sundberg, R. Svensson, A. Wallin, J. Jansson, et al., Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development, Pharmacol Rep, 58(4), 2006, 453.
  • R. Xu, M. Manuel, J. Cramlett, D.B. Kassel, A high throughput metabolic stability screening workflow with automated assessment of data quality in pharmaceutical industry, J Chromatogr A, 1217(10), 2010, 1616-1625.
  • K. Słoczyńska, A. Gunia-Krzyżak, P. Koczurkiewicz, K. Wójcik-Pszczoła, D. Żelaszczyk, J. Popiół, E. Pękala, Metabolic stability and its role in the discovery of new chemical entities, Acta Pharm, 69(3), 2019, 345-361.
  • Y. Li, Q. Meng, M. Yang, D. Liu, X. Hou, L. Tang, et al., Current trends in drug metabolism and pharmacokinetics, Acta Pharm Sin B, 9(6), 2019, 1113-1144.
  • G. Gross, Chapter 27 - Strategies for Enhancing Oral Bioavailability and Brain Penetration, The Practice of Medicinal Chemistry (Fourth Edition), C.G. Wermuth, D, Aldous, P. Raboisson, D. Rognan, 2015, Academic Press, Elsevier.
  • Z. Wang, E.Y.Q. Leow, H.Y. Moy, E.C.Y Chan, Advances in urinary biomarker research of synthetic cannabinoids, Adv Clin Chem, 115, 2023, 1-32.
  • V.B. Siramshetty, P. Shah, E. Kerns, K. Nguyen, K.R. Yu, M. Kabir, et al., Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models, Sci Rep, 10(1), 2020, 20713.
  • S. Ulenberg, T. Bączek, Metabolic stability studies of lead compounds supported by separation techniques and chemometrics analysis, J Sep Sci, 44(1), 2021, 373-386.
  • H.E. Sellitepe, J.M. Oh, İ.S. Doğan, S. Yıldırım, A.B. Aksel, G.S. Jeong, et al., Synthesis of N′-(4-/3-/2-/non-substitutedbenzylidene)-4-[(4-methylphenyl) sulfonyloxy]benzohydrazides and evaluation of their inhibitory activities against monoamine oxidases and β-secretase, Appl Sci, 11(13), 2021, 5830.
  • G.P. Coskun, H.E. Sellitepe, B. Kahveci, M. Ülgen, İ.S. Doğan, Formation of an N-oxide metabolite following metabolism of 1-(3-chlorobenzyl)[1,2,4]triazolo[4,3-a]quinoxaline by in vitro rat liver microsomal preparations, Acta Pharm Sci, 60(4), 2022, 437-449.
  • L. Olsen, M. Montefiori, K.P. Tran, F.S. Jørgensen, SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server, Bioinformatics, 35(17), 2019, 3174-3175.
  • W. Yu, X. He, K. Vanommeslaeghe, A.D. MacKerell Jr, Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations, J Comput Chem, 33(31), 2012, 2451-2468.
  • M. Lee, G. Celenza, B. Boggess, J. Blase, Q. Shi, M. Toth, et al., A potent gelatinase inhibitor with anti‐tumor‐invasive activity and its metabolic disposition, Chem Biol Drug Des, 73(2), 2009, 189-202.
  • Y. Jiao, X. Li, Y. Tang, Y. Peng, G. Chen, X. Wang, et al., Distribution and metabolism of daidzein and its benzene sulfonates in vivo (in mice) based on MALDI-TOF MSI, Front Pharmacol, 13, 2022, 918087.
  • G.P. Coşkun, E.G. Algın, J.C. Karakoç, B.T. Erbul, M. Ülgen, Formation of N-Oxide metabolites from isoniazid hydrazones of substituted benzaldehydes by hepatic washed pig microsomal preparations, J Res Pharm, 27(1), 2023, 241-250.
  • A. Mateeva, L. Peikova, M. Kondeva-Burdina, M. Georgieva, Development of new HPLC method for identification of metabolic degradation of N-pyrrolylhydrazide hydrazones with determined MAO-B activity in cellular cultures, Pharmacia, 69(1), 2022, 15–20.
  • A. Mateeva, M. Kondeva-Burdina, P. Nedialkov, L. Peikova, M. Georgieva, Development of hyphenated techniques and network identification approaches for biotransformational evaluation of promising antitubercular N-pyrrolyl hydrazide-hydrazone in isolated rat hepatocytes, Chromatographia, 86(6), 2023, 497-505.
  • A. Mateeva, M. Kondeva-Burdina, E. Mateev, P. Nedialkov, K. Lyubomirova, L. Peikova, et al., In silico and chromatographic methods for analysis of biotransformation of prospective neuroprotective pyrrole-based hydrazone in isolated rat hepatocytes, Molecules, 29(7), 2024, 1474.
  • J. Kalia, R.T. Raines, Hydrolytic stability of hydrazones and oximes, Angew Chem Int Ed, 47(39), 2008, 7523-7526.
  • P. Kovaříková, Z. Mrkvičková, J. Klimeš, Investigation of the stability of aromatic hydrazones in plasma and related biological material, J Pharm Biomed Anal, 47(2), 2008, 360-370.
  • D.K. Kölmel, E.T. Kool, Oximes and hydrazones in bioconjugation: mechanism and catalysis, Chem Rev, 117(15), 2017, 10358-10376.
  • A. Wojtuch, R. Jankowski, S. Podlewska, S, How can SHAP values help to shape metabolic stability of chemical compounds?, J Cheminf, 13, 2021, 1-20.
  • S.Q. Pantaleão, P.O. Fernandes, J.E. Gonçalves, V.G. Maltarollo, K.M. Honorio, Recent advances in the prediction of pharmacokinetics properties in drug design studies: a review, ChemMedChem, 17(1), 2022, e202100542.
  • J. Zhai, V.H. Man, B. Ji, L. Cai, J. Wang, Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism, Drug Discov Today, 2023, 103728.
There are 25 citations in total.

Details

Primary Language English
Subjects Bioassays
Journal Section Research Articles
Authors

Hasan Erdinç Sellitepe 0000-0001-5339-6940

Göknil Coşkun 0000-0001-5168-3866

Kaan Birgül 0000-0003-3963-4687

Mert Ülgen 0000-0003-4913-4950

İnci Selin Doğan 0000-0003-4949-1747

Publication Date December 20, 2024
Submission Date July 22, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Sellitepe, H. E., Coşkun, G., Birgül, K., Ülgen, M., et al. (2024). Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide. Turkish Journal of Analytical Chemistry, 6(2), 97-101. https://doi.org/10.51435/turkjac.1514896
AMA Sellitepe HE, Coşkun G, Birgül K, Ülgen M, Doğan İS. Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide. TurkJAC. December 2024;6(2):97-101. doi:10.51435/turkjac.1514896
Chicago Sellitepe, Hasan Erdinç, Göknil Coşkun, Kaan Birgül, Mert Ülgen, and İnci Selin Doğan. “Metabolic Stability of a Hydrazone Derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide”. Turkish Journal of Analytical Chemistry 6, no. 2 (December 2024): 97-101. https://doi.org/10.51435/turkjac.1514896.
EndNote Sellitepe HE, Coşkun G, Birgül K, Ülgen M, Doğan İS (December 1, 2024) Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide. Turkish Journal of Analytical Chemistry 6 2 97–101.
IEEE H. E. Sellitepe, G. Coşkun, K. Birgül, M. Ülgen, and İ. S. Doğan, “Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide”, TurkJAC, vol. 6, no. 2, pp. 97–101, 2024, doi: 10.51435/turkjac.1514896.
ISNAD Sellitepe, Hasan Erdinç et al. “Metabolic Stability of a Hydrazone Derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide”. Turkish Journal of Analytical Chemistry 6/2 (December 2024), 97-101. https://doi.org/10.51435/turkjac.1514896.
JAMA Sellitepe HE, Coşkun G, Birgül K, Ülgen M, Doğan İS. Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide. TurkJAC. 2024;6:97–101.
MLA Sellitepe, Hasan Erdinç et al. “Metabolic Stability of a Hydrazone Derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide”. Turkish Journal of Analytical Chemistry, vol. 6, no. 2, 2024, pp. 97-101, doi:10.51435/turkjac.1514896.
Vancouver Sellitepe HE, Coşkun G, Birgül K, Ülgen M, Doğan İS. Metabolic stability of a hydrazone derivative: N′-[(4-chlorophenyl)methylidene)]-4-[(4-methylphenyl)sulfonyloxy]benzohydrazide. TurkJAC. 2024;6(2):97-101.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/