Research Article
BibTex RIS Cite

Aster caucasicus Bitkisinin Yaprak ve Çiçek Kısımlarındaki Fenolik Bileşiklerin, Uçucu Bileşenlerin ve Antioksidan Kapasitenin Karşılaştırmalı Analizi

Year 2025, Volume: 7 Issue: 2, 195 - 208, 31.05.2025
https://doi.org/10.51435/turkjac.1673174

Abstract

Mevcut çalışma, Aster caucasicus bitkisinin kapsamlı fitokimyasal analizini ortaya koymakta olup, bitkinin hem yaprak hem de çiçek kısımlarını detaylı olarak incelemektedir. Araştırmacılar, fenolik bileşik profillerini HPLC-DAD metodolojisi ile, uçucu bileşiklerini SPME-GC-MS tekniği ile ve antioksidan özelliklerini çeşitli analiz yöntemleri (toplam fenolik içerik, toplam flavonoid içerik, FRAP ve CUPRAC) aracılığıyla değerlendirmişlerdir.
Elde edilen bulgular, bitki dokularının kimyasal kompozisyonları arasında önemli farklılıklar olduğunu göstermiştir. Çiçek kısımları, yapraklara (17,81 mg GAE/g) kıyasla daha yüksek toplam fenolik içerik (25,57 mg GAE/g) sergilemiş olup, gallik asit, kafeik asit, rosmarinik asit ve kersetin gibi bileşenlerin konsantrasyonları belirgin şekilde daha yüksek bulunmuştur. Buna karşın, yapraklar daha yüksek toplam flavonoid içeriği (çiçeklerdeki 3,99 mg QE/g'ye karşılık 5,02 mg QE/g) ve hem FRAP hem de CUPRAC analizlerinde daha güçlü antioksidan kapasite sergilemiştir.
Uçucu bileşik analizi sonucunda, monoterpenler (beta-pinen, D-limonen, alfa-pinen), terpenoidler, seskiterpenler ve oksijenlenmiş heterosiklik bileşikler dahil olmak üzere çeşitli biyoaktif bileşenler tespit edilmiştir. Çiçeklerde beta-pinen (%52,26) baskın bileşen olarak belirlenirken, yapraklarda D-limonen (%28,68) en yüksek orana sahip bileşen olarak saptanmıştır.
Bu araştırma, Aster caucasicus bitkisi hakkındaki mevcut bilgi boşluğunu doldurarak, bitkinin farmasötik ve kozmetik ürünlerdeki potansiyel uygulamalarına ışık tutmaktadır. Zengin fenolik içeriğe sahip çiçek kısımları farmasötik uygulamalar için umut vadederken, yüksek flavonoid içeriği ve antioksidan kapasitesine sahip yaprak kısımları, özellikle UV koruyucu özellikler bakımından kozmetik ürünlerde değerli bir kaynak olarak değerlendirilebilir

References

  • N. Kumar, V. Pruthi, Potential applications of ferulic acid from natural sources, Biotechnol. Rep. 4 (2014) 86-93.
  • K.H. Kwon, A. Barve, S. Yu, M.T. Huang, A.N. Kong, Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models, Acta Pharmacol. Sin. 28(9) (2007) 1409-1421.
  • J. Moore, M. Yousef, E. Tsiani, Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols, Nutrients 8(11) (2016) 731.
  • A. Trivellini, M. Lucchesini, R. Maggini, et al., Lamiaceae phenols as multifaceted compounds: bioactivity, industrial prospects and role of positive-stress, Ind. Crops Prod. 83 (2016) 241-254.
  • Y. Sakihama, M.F. Cohen, S.C. Grace, H. Yamasaki, Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants, Toxicology 177(1) (2002) 67-80.
  • W. Watjen, G. Michels, B. Steffan, et al., Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis, J. Nutr. 135(3) (2005) 525-531.
  • C.M. Ajila, S.K. Brar, M. Verma, et al., Extraction and analysis of polyphenols: recent trends, Crit. Rev. Biotechnol. 31(3) (2011) 227-249.
  • L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev. 56(11) (1998) 317-333.
  • L.M. Carvalho, M. Martini, A.P.L. Moreira, et al., Presence of synthetic pharmaceuticals as adulterants in slimming phytotherapeutic formulations and their analytical determination, Forensic Sci. Int. 204(1) (2010) 6-11.
  • L.M. Carvalho, A.P. Moreira, M. Martini, T. Falcão, The illegal use of synthetic pharmaceuticals in herbal formulations: an overview on the adulteration practice and analytical investigations, Forensic Sci. Rev. 23(2) (2011) 73-90.
  • D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review of the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89(3) (2011) 217-233.
  • M.A.M. Maciel, A.C. Pinto, V.F. Veiga Jr, et al., Plantas medicinais: a necessidade de estudos multidisciplinares, Quím. Nova 25(3) (2002) 429-438.
  • N. Balasundra, K. Sundram, S. Samman, Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence, and potential uses, Food Chem. 99(1) (2006) 191-203.
  • C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) (2007) 3268-3295.
  • I.G. Casella, C. Colonna, M. Contursi, Electroanalytical determination of some phenolic acids by high-performance liquid chromatography at gold electrodes, Electroanalysis 19(14) (2007) 1503-1508.
  • R. Gotti, Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants, J. Pharm. Biomed. Anal. 55(4) (2011) 775-801.
  • D. Argyropoulos, J. Müller, Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.), J. Appl. Res. Med. Aromat. Plants 1(2) (2014) 59-69.
  • V. Kumar, R.S. Chauhan, H. Sood, C. Tandon, Cost effective quantification of picrosides in Picrorhiza kurroa by employing response surface methodology using HPLC-UV, J. Plant Biochem. Biotechnol. 24(4) (2015) 376-384.
  • V. Kumar, H. Sood, R.S. Chauhan, Optimization of a preparative RP-HPLC method for isolation and purification of picrosides in Picrorhiza kurroa, J. Plant Biochem. Biotechnol. 25(2) (2016) 208-214.
  • A. Ray, S.D. Gupta, S. Ghosh, Isolation and characterization of potent bioactive fraction with antioxidant and UV absorbing activity from Aloe barbadensis Miller gel, J. Plant Biochem. Biotechnol. 22(4) (2013) 483-487.
  • M.N. Irakli, V.F. Samanidou, C.G. Biliaderis, I.N. Papadoyannis, Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection, J. Sep. Sci. 35(13) (2012) 1603-1611.
  • B. Shan, Y.Z. Cai, M. Sun, H. Corke, Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents, J. Agric. Food Chem. 53(20) (2005) 7749-7759.
  • S.T. Saito, A. Welzel, E.S. Suyenaga, F. Bueno, A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC, Food Sci. Technol. (Campinas) 26(2) (2006) 394-400.
  • A. Cantalapiedra, M.J. Gismera, M.T. Sevilla, J.R. Procopio, Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method, Phytochem. Anal. 25(3) (2014) 247-254.
  • E. Barrajon-Catalan, S. Fernandez-Arroyo, C. Roldan, et al., A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship, Phytochem. Anal. 22(4) (2011) 303-312.
  • C.S. Harris, A.J. Burt, A. Saleem, et al., A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium, Phytochem. Anal. 18(2) (2007) 161-169.
  • K.M. Kalili, A. de Villiers, Recent developments in the HPLC separation of phenolic compounds, J. Sep. Sci. 34(8) (2011) 854-876.
  • A. Ribas-Agustí, M. Gratacos-Cubarsi, C. Sarraga, et al., Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection, Phytochem. Anal. 22(6) (2011) 555-563.
  • R. Rodriguez-Solana, J.M. Salgado, J.M. Dominguez, S. Cortes-Dieguez, Comparison of Soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from Lamiaceae species, Phytochem. Anal. 26(1) (2015) 61-71.
  • J.L. Rambla, A. Trapero-Mozos, G. Diretto, et al., Gene-metabolite networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production, Front. Plant Sci. 7 (2016) 1619.
  • J. Zhang, J. Zhao, Y. Xu, et al., Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor, Front. Plant Sci. 6 (2015) 1042.
  • A. Slegers, P. Angers, É. Ouellet, T. Truchon, K. Pedneault, Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production, Molecules 20(6) (2015) 10980-11016.
  • X.W. Ma, M.Q. Su, H.X. Wu, et al., Analysis of the volatile profile of core Chinese mango germplasm by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry, Molecules 23(6) (2018) 1480.
  • R. Marsili, Flavor, Fragrance, and Odor Analysis, 2nd ed., CRC Press: Boca Raton, FL, 2012.
  • S. Van Nocker, S.E. Gardiner, Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops, Hortic. Res. 1 (2014) 14022.
  • S. Yang, J. Fresnedo-Ramírez, M. Wang, et al., A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine, Hortic. Res. 3 (2016) 16002.
  • L.A. Chaparro-Torres, M.C. Bueso, J.P. Fernández-Trujillo, Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit, J. Sci. Food Agric. 96(7) (2016) 2352-2365.
  • J.M. Obando-Ulloa, J. Ruiz, A.J. Monforte, J.P. Fernández-Trujillo, Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.), Food Chem. 118(1) (2010) 815-822.
  • F. Dunemann, D. Ulrich, A. Boudichevskaia, C. Grafe, W.E. Weber, QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny "Discovery" × "Prima", Mol. Breed. 23(3) (2009) 501-521.
  • J. Vogt, D. Schiller, D. Ulrich, W. Schwab, F. Dunemann, Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica), Tree Genet. Genomes 9(6) (2013) 1493-1511.
  • J. Battilana, L. Costantini, F. Emanuelli, et al., The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine, Theor. Appl. Genet. 118(4) (2009) 653-669.
  • A. Doligez, E. Audiot, R. Baumes, P. This, QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.), Mol. Breed. 18(2) (2006) 109-125.
  • S. Guillaumie, A. Ilg, S. Réty, et al., Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality, Plant Physiol. 162(2) (2013) 604-615.
  • Y. Bezman, F. Mayer, G.R. Takeoka, et al., Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds, J. Agric. Food Chem. 51(3) (2003) 722-726.
  • T. Vandendriessche, B.M. Nicolai, M.L.A.T.M. Hertog, Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma, Food Anal. Methods 6(2) (2013) 512-520.
  • L. García-Vico, A. Belaj, A. Sánchez-Ortiz, et al., Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil, Molecules 22(1) (2017) 141.
  • T.B. Ng, L. Liu, Y. Lu, et al., Antioxidant activity of compounds from the medicinal herb Aster tataricus, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 136(2) (2003) 109-115.
  • A.K. Tiwari, Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy, Curr. Sci. 81(9) (2001) 1179-1187.
  • F. Pourmorad, S.J. Hosseinimehr, N. Shahabimajd, Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants, Afr. J. Biotechnol. 5(11) (2006) 1142-1145.
  • A. Uysal, G. Zengin, Y. Durak, et al., Screening for antioxidant and antimutagenic properties of extracts from Centaurea pterocaula as well as theirs enzyme inhibitory potentials, Marmara Pharm. J. 20(2) (2016) 232-242.
  • İ. Akbulut, E. Gürbüz, A.R. Ergün, T. Baysal, Drying of apricots treated with Ginkgo biloba plant extract and determination of the quality properties, J. Adv. Res. Nat. Appl. Sci. 7(1) (2021) 145-159.
  • K. Slinkard, V.L. Singleton, Total phenol analysis: automation and comparison with manual methods, Am. J. Enol. Vitic. 28(1) (1977) 49-55.
  • J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64(4) (1999) 555-559.
  • I.F. Benzie, Y.T. Szeto, Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay, J. Agric. Food Chem. 47(2) (1999) 633-636.
  • R. Apak, K. Güçlü, M. Ozyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem. 52(26) (2004) 7970-7981.
  • C. Altuntaş, A. Gümrükçüoğlu, N. Aksu Kalmuk, K.V. İmamoğlu, The bioactive potential of three different Rumex species: Antioxidant capacity, mineral composition and elemental status, S. Afr. J. Bot. 180 (2025) 107-120.
  • S.L. Guzmán-Gutiérrez, R. Gómez-Cansino, J.C. García-Zeballos, et al., Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles, J. Ethnopharmacol. 143(2) (2012) 673-679.
  • R.N. Almeida, S.C. Motta, J.R. Leite, Óleos essenciais com propriedades anticonvulsivantes, Bol. Latinoam. Caribe Plant. Med. Aromát. 2(1) (2003) 3-6.
  • I.A.C. Menezes, I.J.A. Moreira, J.W.A. De Paula, et al., Cardiovascular effects induced by Cymbopogon winterianus essential oil in rats: involvement of calcium channels and vagal pathway, J. Pharm. Pharmacol. 62(2) (2010) 215-221.
  • A.C.R. Silva, P.M. Lopes, M.M.B. Azevedo, et al., Biological activities of α-pinene and β-pinene enantiomers, Molecules 17(6) (2012) 6305-6316.
  • S.A. Mahdavi, R. Sadeghi, A. Faridi, et al., Nanodelivery systems for d-limonene; techniques and applications, Food Chem. 388 (2022) 132479.
  • M.A.K. Jansen, V. Gaba, B.M. Greenberg, Higher plants and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci. 3(4) (1998) 131-135.
  • D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol. 7(6) (2006) 581-591.
  • G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.
  • P. Feduraev, L. Skrypnik, S. Nebreeva, et al., Variability of phenolic compound accumulation and antioxidant activity in wild plants of some Rumex species (Polygonaceae), Antioxidants 11(2) (2022) 311.
  • A. Güneş, Ş. Kordali, M. Turan, A.U. Bozhüyük, Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicinal plants, Ind. Crops Prod. 137 (2019) 208-213.
  • M. Bibiso, M. Anza, B. Alemayehu, Antibacterial and antioxidant activity of Cirsium englerianum (Asteraceae), an endemic plant to Ethiopia, Res. J. Pharmacogn. 8(3) (2021) 5-12.
  • V. Koleckar, L. Opletal, E. Brojerova, et al., Evaluation of natural antioxidants of Leuzea carthamoides as a result of a screening study of 88 plant extracts from the European Asteraceae and Cichoriaceae, J. Enzyme Inhib. Med. Chem. 23(2) (2008) 218-224.
  • A. Ortiz-Espín, A. Sanchez-Guerrero, F. Sevilla, A. Jimenez, The role of ascorbate in plant growth and development, In: M.A. Hossain, et al. (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance, Springer: Cham, Switzerland, 2017, pp. 25-45.
  • J.A. Ross, C.M. Kasum, Dietary flavonoids: bioavailability, metabolic effects, and safety, Annu. Rev. Nutr. 22(1) (2002) 19-34.
  • L. Li, L. He, X. Su, et al., Chemotaxonomy of Aster species from the Qinghai-Tibetan Plateau based on metabolomics, Phytochem. Anal. 32(6) (2021) 890-901.
  • N.G. Quilantang, S.H. Ryu, S.H. Park, et al., Inhibitory activity of methanol extracts from different colored flowers on aldose reductase and HPLC-UV analysis of quercetin, Hortic. Environ. Biotechnol. 59(6) (2018) 899-907.
  • V. Bhargav, R. Kumar, K.S. Shivashankara, et al., Diversity of flavonoids profile in China aster [Callistephus chinensis (L.) Nees.] genotypes, Ind. Crops Prod. 111 (2018) 513-519.

Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus

Year 2025, Volume: 7 Issue: 2, 195 - 208, 31.05.2025
https://doi.org/10.51435/turkjac.1673174

Abstract

The study presents a comprehensive phytochemical analysis of Aster caucasicus, examining both the leaf and flower parts of this plant. The researchers investigated the phenolic compound profiles using HPLC-DAD methodology, volatile compounds via SPME-GC-MS technique, and antioxidant properties through multiple assays (total phenolic content, total flavonoid content, FRAP, and CUPRAC).
Results revealed significant differences between plant tissues. The flower parts contained higher total phenolic content (25.57 mg GAE/g) compared to leaves (17.81 mg GAE/g), with notably higher concentrations of compounds like gallic acid, caffeic acid, rosmarinic acid, and quercetin. Conversely, leaves demonstrated higher total flavonoid content (5.02 mg QE/g vs. 3.99 mg QE/g in flowers) and greater antioxidant capacity in both FRAP and CUPRAC assays.
Volatile compound analysis identified several bioactive components, including monoterpenes (beta-pinene, D-limonene, alpha-pinene), terpenoids, sesquiterpenes, and oxygenated heterocyclic compounds. Beta-pinene dominated in flowers (52.26%), while D-limonene was highest in leaves (28.68%).
This research fills a knowledge gap regarding Aster caucasicus, suggesting its potential applications in pharmaceutical and cosmetic products. The flower parts show promise for pharmaceutical applications due to their rich phenolic content, while the leaf parts, with their high flavonoid content and antioxidant capacity, could be valuable in cosmetic products, particularly for UV protection.

References

  • N. Kumar, V. Pruthi, Potential applications of ferulic acid from natural sources, Biotechnol. Rep. 4 (2014) 86-93.
  • K.H. Kwon, A. Barve, S. Yu, M.T. Huang, A.N. Kong, Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models, Acta Pharmacol. Sin. 28(9) (2007) 1409-1421.
  • J. Moore, M. Yousef, E. Tsiani, Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols, Nutrients 8(11) (2016) 731.
  • A. Trivellini, M. Lucchesini, R. Maggini, et al., Lamiaceae phenols as multifaceted compounds: bioactivity, industrial prospects and role of positive-stress, Ind. Crops Prod. 83 (2016) 241-254.
  • Y. Sakihama, M.F. Cohen, S.C. Grace, H. Yamasaki, Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants, Toxicology 177(1) (2002) 67-80.
  • W. Watjen, G. Michels, B. Steffan, et al., Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis, J. Nutr. 135(3) (2005) 525-531.
  • C.M. Ajila, S.K. Brar, M. Verma, et al., Extraction and analysis of polyphenols: recent trends, Crit. Rev. Biotechnol. 31(3) (2011) 227-249.
  • L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev. 56(11) (1998) 317-333.
  • L.M. Carvalho, M. Martini, A.P.L. Moreira, et al., Presence of synthetic pharmaceuticals as adulterants in slimming phytotherapeutic formulations and their analytical determination, Forensic Sci. Int. 204(1) (2010) 6-11.
  • L.M. Carvalho, A.P. Moreira, M. Martini, T. Falcão, The illegal use of synthetic pharmaceuticals in herbal formulations: an overview on the adulteration practice and analytical investigations, Forensic Sci. Rev. 23(2) (2011) 73-90.
  • D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review of the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89(3) (2011) 217-233.
  • M.A.M. Maciel, A.C. Pinto, V.F. Veiga Jr, et al., Plantas medicinais: a necessidade de estudos multidisciplinares, Quím. Nova 25(3) (2002) 429-438.
  • N. Balasundra, K. Sundram, S. Samman, Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence, and potential uses, Food Chem. 99(1) (2006) 191-203.
  • C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) (2007) 3268-3295.
  • I.G. Casella, C. Colonna, M. Contursi, Electroanalytical determination of some phenolic acids by high-performance liquid chromatography at gold electrodes, Electroanalysis 19(14) (2007) 1503-1508.
  • R. Gotti, Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants, J. Pharm. Biomed. Anal. 55(4) (2011) 775-801.
  • D. Argyropoulos, J. Müller, Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.), J. Appl. Res. Med. Aromat. Plants 1(2) (2014) 59-69.
  • V. Kumar, R.S. Chauhan, H. Sood, C. Tandon, Cost effective quantification of picrosides in Picrorhiza kurroa by employing response surface methodology using HPLC-UV, J. Plant Biochem. Biotechnol. 24(4) (2015) 376-384.
  • V. Kumar, H. Sood, R.S. Chauhan, Optimization of a preparative RP-HPLC method for isolation and purification of picrosides in Picrorhiza kurroa, J. Plant Biochem. Biotechnol. 25(2) (2016) 208-214.
  • A. Ray, S.D. Gupta, S. Ghosh, Isolation and characterization of potent bioactive fraction with antioxidant and UV absorbing activity from Aloe barbadensis Miller gel, J. Plant Biochem. Biotechnol. 22(4) (2013) 483-487.
  • M.N. Irakli, V.F. Samanidou, C.G. Biliaderis, I.N. Papadoyannis, Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection, J. Sep. Sci. 35(13) (2012) 1603-1611.
  • B. Shan, Y.Z. Cai, M. Sun, H. Corke, Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents, J. Agric. Food Chem. 53(20) (2005) 7749-7759.
  • S.T. Saito, A. Welzel, E.S. Suyenaga, F. Bueno, A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC, Food Sci. Technol. (Campinas) 26(2) (2006) 394-400.
  • A. Cantalapiedra, M.J. Gismera, M.T. Sevilla, J.R. Procopio, Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method, Phytochem. Anal. 25(3) (2014) 247-254.
  • E. Barrajon-Catalan, S. Fernandez-Arroyo, C. Roldan, et al., A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship, Phytochem. Anal. 22(4) (2011) 303-312.
  • C.S. Harris, A.J. Burt, A. Saleem, et al., A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium, Phytochem. Anal. 18(2) (2007) 161-169.
  • K.M. Kalili, A. de Villiers, Recent developments in the HPLC separation of phenolic compounds, J. Sep. Sci. 34(8) (2011) 854-876.
  • A. Ribas-Agustí, M. Gratacos-Cubarsi, C. Sarraga, et al., Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection, Phytochem. Anal. 22(6) (2011) 555-563.
  • R. Rodriguez-Solana, J.M. Salgado, J.M. Dominguez, S. Cortes-Dieguez, Comparison of Soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from Lamiaceae species, Phytochem. Anal. 26(1) (2015) 61-71.
  • J.L. Rambla, A. Trapero-Mozos, G. Diretto, et al., Gene-metabolite networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production, Front. Plant Sci. 7 (2016) 1619.
  • J. Zhang, J. Zhao, Y. Xu, et al., Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor, Front. Plant Sci. 6 (2015) 1042.
  • A. Slegers, P. Angers, É. Ouellet, T. Truchon, K. Pedneault, Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production, Molecules 20(6) (2015) 10980-11016.
  • X.W. Ma, M.Q. Su, H.X. Wu, et al., Analysis of the volatile profile of core Chinese mango germplasm by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry, Molecules 23(6) (2018) 1480.
  • R. Marsili, Flavor, Fragrance, and Odor Analysis, 2nd ed., CRC Press: Boca Raton, FL, 2012.
  • S. Van Nocker, S.E. Gardiner, Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops, Hortic. Res. 1 (2014) 14022.
  • S. Yang, J. Fresnedo-Ramírez, M. Wang, et al., A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine, Hortic. Res. 3 (2016) 16002.
  • L.A. Chaparro-Torres, M.C. Bueso, J.P. Fernández-Trujillo, Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit, J. Sci. Food Agric. 96(7) (2016) 2352-2365.
  • J.M. Obando-Ulloa, J. Ruiz, A.J. Monforte, J.P. Fernández-Trujillo, Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.), Food Chem. 118(1) (2010) 815-822.
  • F. Dunemann, D. Ulrich, A. Boudichevskaia, C. Grafe, W.E. Weber, QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny "Discovery" × "Prima", Mol. Breed. 23(3) (2009) 501-521.
  • J. Vogt, D. Schiller, D. Ulrich, W. Schwab, F. Dunemann, Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica), Tree Genet. Genomes 9(6) (2013) 1493-1511.
  • J. Battilana, L. Costantini, F. Emanuelli, et al., The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine, Theor. Appl. Genet. 118(4) (2009) 653-669.
  • A. Doligez, E. Audiot, R. Baumes, P. This, QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.), Mol. Breed. 18(2) (2006) 109-125.
  • S. Guillaumie, A. Ilg, S. Réty, et al., Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality, Plant Physiol. 162(2) (2013) 604-615.
  • Y. Bezman, F. Mayer, G.R. Takeoka, et al., Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds, J. Agric. Food Chem. 51(3) (2003) 722-726.
  • T. Vandendriessche, B.M. Nicolai, M.L.A.T.M. Hertog, Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma, Food Anal. Methods 6(2) (2013) 512-520.
  • L. García-Vico, A. Belaj, A. Sánchez-Ortiz, et al., Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil, Molecules 22(1) (2017) 141.
  • T.B. Ng, L. Liu, Y. Lu, et al., Antioxidant activity of compounds from the medicinal herb Aster tataricus, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 136(2) (2003) 109-115.
  • A.K. Tiwari, Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy, Curr. Sci. 81(9) (2001) 1179-1187.
  • F. Pourmorad, S.J. Hosseinimehr, N. Shahabimajd, Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants, Afr. J. Biotechnol. 5(11) (2006) 1142-1145.
  • A. Uysal, G. Zengin, Y. Durak, et al., Screening for antioxidant and antimutagenic properties of extracts from Centaurea pterocaula as well as theirs enzyme inhibitory potentials, Marmara Pharm. J. 20(2) (2016) 232-242.
  • İ. Akbulut, E. Gürbüz, A.R. Ergün, T. Baysal, Drying of apricots treated with Ginkgo biloba plant extract and determination of the quality properties, J. Adv. Res. Nat. Appl. Sci. 7(1) (2021) 145-159.
  • K. Slinkard, V.L. Singleton, Total phenol analysis: automation and comparison with manual methods, Am. J. Enol. Vitic. 28(1) (1977) 49-55.
  • J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64(4) (1999) 555-559.
  • I.F. Benzie, Y.T. Szeto, Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay, J. Agric. Food Chem. 47(2) (1999) 633-636.
  • R. Apak, K. Güçlü, M. Ozyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem. 52(26) (2004) 7970-7981.
  • C. Altuntaş, A. Gümrükçüoğlu, N. Aksu Kalmuk, K.V. İmamoğlu, The bioactive potential of three different Rumex species: Antioxidant capacity, mineral composition and elemental status, S. Afr. J. Bot. 180 (2025) 107-120.
  • S.L. Guzmán-Gutiérrez, R. Gómez-Cansino, J.C. García-Zeballos, et al., Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles, J. Ethnopharmacol. 143(2) (2012) 673-679.
  • R.N. Almeida, S.C. Motta, J.R. Leite, Óleos essenciais com propriedades anticonvulsivantes, Bol. Latinoam. Caribe Plant. Med. Aromát. 2(1) (2003) 3-6.
  • I.A.C. Menezes, I.J.A. Moreira, J.W.A. De Paula, et al., Cardiovascular effects induced by Cymbopogon winterianus essential oil in rats: involvement of calcium channels and vagal pathway, J. Pharm. Pharmacol. 62(2) (2010) 215-221.
  • A.C.R. Silva, P.M. Lopes, M.M.B. Azevedo, et al., Biological activities of α-pinene and β-pinene enantiomers, Molecules 17(6) (2012) 6305-6316.
  • S.A. Mahdavi, R. Sadeghi, A. Faridi, et al., Nanodelivery systems for d-limonene; techniques and applications, Food Chem. 388 (2022) 132479.
  • M.A.K. Jansen, V. Gaba, B.M. Greenberg, Higher plants and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci. 3(4) (1998) 131-135.
  • D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol. 7(6) (2006) 581-591.
  • G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.
  • P. Feduraev, L. Skrypnik, S. Nebreeva, et al., Variability of phenolic compound accumulation and antioxidant activity in wild plants of some Rumex species (Polygonaceae), Antioxidants 11(2) (2022) 311.
  • A. Güneş, Ş. Kordali, M. Turan, A.U. Bozhüyük, Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicinal plants, Ind. Crops Prod. 137 (2019) 208-213.
  • M. Bibiso, M. Anza, B. Alemayehu, Antibacterial and antioxidant activity of Cirsium englerianum (Asteraceae), an endemic plant to Ethiopia, Res. J. Pharmacogn. 8(3) (2021) 5-12.
  • V. Koleckar, L. Opletal, E. Brojerova, et al., Evaluation of natural antioxidants of Leuzea carthamoides as a result of a screening study of 88 plant extracts from the European Asteraceae and Cichoriaceae, J. Enzyme Inhib. Med. Chem. 23(2) (2008) 218-224.
  • A. Ortiz-Espín, A. Sanchez-Guerrero, F. Sevilla, A. Jimenez, The role of ascorbate in plant growth and development, In: M.A. Hossain, et al. (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance, Springer: Cham, Switzerland, 2017, pp. 25-45.
  • J.A. Ross, C.M. Kasum, Dietary flavonoids: bioavailability, metabolic effects, and safety, Annu. Rev. Nutr. 22(1) (2002) 19-34.
  • L. Li, L. He, X. Su, et al., Chemotaxonomy of Aster species from the Qinghai-Tibetan Plateau based on metabolomics, Phytochem. Anal. 32(6) (2021) 890-901.
  • N.G. Quilantang, S.H. Ryu, S.H. Park, et al., Inhibitory activity of methanol extracts from different colored flowers on aldose reductase and HPLC-UV analysis of quercetin, Hortic. Environ. Biotechnol. 59(6) (2018) 899-907.
  • V. Bhargav, R. Kumar, K.S. Shivashankara, et al., Diversity of flavonoids profile in China aster [Callistephus chinensis (L.) Nees.] genotypes, Ind. Crops Prod. 111 (2018) 513-519.
There are 73 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Research Articles
Authors

Abidin Gümrükçüoğlu 0000-0001-7285-9664

Publication Date May 31, 2025
Submission Date April 10, 2025
Acceptance Date May 23, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Gümrükçüoğlu, A. (2025). Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus. Turkish Journal of Analytical Chemistry, 7(2), 195-208. https://doi.org/10.51435/turkjac.1673174
AMA Gümrükçüoğlu A. Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus. TurkJAC. May 2025;7(2):195-208. doi:10.51435/turkjac.1673174
Chicago Gümrükçüoğlu, Abidin. “Comparative Analysis of Phenolic Compounds, Volatile Components, and Antioxidant Capacity in Leaf and Flower Parts of Aster Caucasicus”. Turkish Journal of Analytical Chemistry 7, no. 2 (May 2025): 195-208. https://doi.org/10.51435/turkjac.1673174.
EndNote Gümrükçüoğlu A (May 1, 2025) Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus. Turkish Journal of Analytical Chemistry 7 2 195–208.
IEEE A. Gümrükçüoğlu, “Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus”, TurkJAC, vol. 7, no. 2, pp. 195–208, 2025, doi: 10.51435/turkjac.1673174.
ISNAD Gümrükçüoğlu, Abidin. “Comparative Analysis of Phenolic Compounds, Volatile Components, and Antioxidant Capacity in Leaf and Flower Parts of Aster Caucasicus”. Turkish Journal of Analytical Chemistry 7/2 (May2025), 195-208. https://doi.org/10.51435/turkjac.1673174.
JAMA Gümrükçüoğlu A. Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus. TurkJAC. 2025;7:195–208.
MLA Gümrükçüoğlu, Abidin. “Comparative Analysis of Phenolic Compounds, Volatile Components, and Antioxidant Capacity in Leaf and Flower Parts of Aster Caucasicus”. Turkish Journal of Analytical Chemistry, vol. 7, no. 2, 2025, pp. 195-08, doi:10.51435/turkjac.1673174.
Vancouver Gümrükçüoğlu A. Comparative analysis of phenolic compounds, volatile components, and antioxidant capacity in leaf and flower parts of Aster caucasicus. TurkJAC. 2025;7(2):195-208.