Review
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 2, 52 - 62, 17.12.2021
https://doi.org/10.51801/turkjrfs.954843

Abstract

References

  • Abbasi Khalaki, M., A. Ghorbani and M. Moameri. 2016. Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J Rangel Sci. 6:(3), 221-231
  • Abbasi Khalaki, M., A. Ghorbani and F. Dadjou. 2019a. Influence of nanopriming on Festuca ovina seed germination and early seedling traits under drought stress in Laboratory condition. Ecopersia. 7,133-139
  • Abbasi Khalaki, M., A. Ghorbani, A. Esmali Ouri, A.A. Shokouhian and A.A. Jafari. 2019b. Varying the vegetative and morphological traits of Thymus kotschyanus L. submitted to potassium silicate nanoparticles, superabsorbent hydrogel, effective microorganisms and animal manure. Biosci J. 35,115-125
  • Abbasi Khalaki, M., M. Moameri, B. Asgari Lajayer and T. Astatkie. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant growth regulation. 93, 13-28.
  • Abu-Hamdah, R., W.J. Cho, S.J. Cho, A. Jeremic, M. Kelly, A.E. Ilie and B.P. Jena. 2004. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol. Int. 28, 7-17.
  • Afshari, M., A. Pazoki and O. Sadeghipour. 2021. Foliar-applied Silicon and its Nanoparticles Stimulates Physio-chemical Changes to Improve Growth, Yield and Active Constituents of Coriander (Coriandrum Sativum L.) Essential oil Under Different Irrigation Regimes. Research Square. doi: 10.21203/rs.3.rs-176146/v1.
  • Ahmad, P., R. John, M. Sarwat and S. Umar. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod. 2:(4), 353-66.
  • Ahmad, B., A. Shabbir, H. Jaleel, M. Masroor, A. Khan and Y. Sadiq. 2018. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr Plant Biol. 13,6-15
  • Ali, S., M. Rizwan, S. Noureen, S. Anwar, B. Ali, M. Naveed, E.F. Abd Allah, A.A. Alqarawi and P. Ahmad. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ. Sci. Pollut. Res. 26, 11288-11299
  • Amooaghaie, R., F. Tabatabaei and A.M. Ahadi. 2015. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf. 113,259-270
  • Anoop, N. and A.K. Gupta. 2003. Transgenic indica rice cv IR-50 overexpressing Vigna aconitifolia d (1) pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. Journal of Plant Biochemistry and Biotechnology. 12,109-116.
  • Ashkavand, P., M. Tabari, M. Zarafshar, I. Tomášková and D. Struve. 2015. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Forest Research Papers. 76: (4),350-359
  • Askary, M., S.M. Talebi, F. Amini and A. Dousti Balout Bangan. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 63:(1),65-67.
  • Atha, D.H., H. Wang, E.J. Petersen, D. Cleveland, R.D. Holbrook, P. Jaruga, M. Dizdaroglu, B. Xing and B.C. Nelson. 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 46,1819-1827
  • Azimi, R., M. Jankju Borzelabad, H. Feizi and A. Azimi. 2014. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol. 16:(3),25-29
  • Bal, A. 2019. Yapraktan uygulanan kitosan, demiroksit ve kitosan-demiroksit kompleksi nanopartiküllerinin Hypericum triquetrifolium Turra'nın sekonder metabolitleri üzerine etkisi. Dicle Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Yüksek Lisans Tezi, Diyarbakır, 37 s.
  • Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. 15, 15-22. https://doi.org/10.1007/s10311-016-0600-4
  • Cinisli, K.T., S. Uçar ve N. Dikbaş. 2019. Nanomateryallerin Tarımda Kullanımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 29:(4),817-831
  • Darvishzadeh, F., F. Najatzadeh and A.R. Iranbakhsh. 2015. Effect of silver nanoparticles on salinity tolerance of basil plant in germination stages under laboratory conditions. J. Cell. Biotechnol. Mol. 20, 63-70.
  • Dastjerdi, E.B., I.B. Sahid and K.B. Jusoh. 2016. Phytotoxicity assessment of nano-zno on groundnut (Arachis hypogaea) seed germination in MS medium. Sains Malaysiana. 45, 1183.
  • de Sousa, A., A.M. Saleh, T.H. Habeeb, Y.M. Hassan, R. Zrieq, M.A.M. Wadaan, W.N. Hozzein, S. Selim, M. Matos and H. AbdElgawad. 2019. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci. Total Environ. 693, doi:10.1016/j.scitotenv.2019.133636.
  • Dehkourdi, E.H. and M. Mosavi. 2013. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res. 155:(2),283-286
  • Dietz, K.J and S. Herth. 2011. Plant nanotoxicology. Trends in plant science. 16:(11), 582-9.
  • Eichert, T., A. Kurtz, U. Steiner and H.E. Goldbach. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and watersuspended nanoparticles. Physiol. Plant. 134, 151-160.
  • Ekhtiyari, R. and F. Moraghebi. 2012. Effect of nanosilver particles on salinity tolerance of cumin (Cuminum cyminum L.). J. Plant Biotechnol. 25, 99-107.
  • El-Temsah, Y.S. and E.J. Joner. 2010. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 27,42-49
  • Eshi, Y., Y. Ezhang, W. Ehan, R. Efeng, Y. Ehu, J. Eguo and H.J. Gong. 2016. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. Front. Plant Sci. 7, 196.
  • Farid, M., M.B. Shakoor, A. Ehsan, S. Ali, M. Zubair and M.S. Hanif. 2013. Morphological, physiological and biochemical responses of different plant species to Cd stress. International Journal of Chemical and Biochemical Sciences. 3,53-60
  • Fazeli-Nasab, B., A.R. Sirousmehr and H. Azad. 2018. Effect of titanium dioxide nanoparticles on essential oil quantity and quality in Thymus vulgaris under water deficit. J Medicin Plants By-product. 2,125-133
  • Feizi, H., M. Kamali, L. Jafari and P.R. Moghaddam. 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 91:(4),506-511
  • Feng, Y., X. Cui, S. He, G. Dong, M. Chen, J. Wang and X. Lin. 2013. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol. 47:(16),9496-9504
  • Fleischer, A., M.A. O’Neill and R. Ehwald. 1999. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 12, 829-838.
  • García-López J.I., F. Zavala-García, E. Olivares-Sáenz, R.H. Lira-Saldívar, E.D. Barriga-Castro and N.A. Ruiz-Torres. 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy. 8,1-13
  • Güney, A., D.J. Pilbeam, A., Inal, E.G. Bağcı ve S. Coban. 2007. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stres. Journal of Plant Interactions. 2(2), 105-113
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 53:(366), 1-11
  • Hernandez, J.A., A. Jimenez, P.M. Mullineaux and F. Seviela. 2000. Tolerance of pea (Pisum sativum L.) to longterm salt stress is associated to induction of antioxidant defences. Plant Cell Environ. 23:(8), 853-862.
  • Hojjat, S.S. and M. Kamvab. 2017. Fenugreek seed germination under salinity levels. Russ. Agric. Sci. 43, 61-65.
  • Hojjat, S.S. 2019. Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. J Environ Soil Sci. 2(2), 186-191
  • Hong, J., C.M. Rico, L. Zhao, A.S. Adeleye, A.A. Keller, J.R. Peralta-Videa and J.L. Gardea-Torresdey. 2016. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci. 17,177-185
  • Hossain, P., J.A. Piyatida, T. da Silva and M. Fujita. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany. 872875, 37 p
  • Hossain, Z., G. Mustafa, K. Sakata and S. Komatsu. 2016. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J. Hazard. Mater. 304, 291-305.
  • Hossain, A., M. Skalicky, M. Brestic, S. Maitra, M. Ashraful Alam, M.A. Syed, J. Hossain, S. Sarkar, S. Saha, P. Bhadra, T. Shankar, R. Bhatt, A. Kumar Chaki, A. El Sabagh and T. Islam. 2021. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 11, 241. https://doi.org/10.3390/agronomy11020241
  • Hussain, A., S. Ali, M. Rizwan, M.Z.U. Rehman, M.F. Qayyum, H. Wang and J. Rinklebe. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol. Environ. Saf. 173, 156-164,
  • Jaberzadeh, A., P. Moaveni, H.R. Tohidi Moghadam and H. Zahedi. 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti Agrobot. Cluj-Napoca. 41,201-207.
  • Judy, J.D., J.M. Unrine, W. Rao, S. Wirick and P.M. Bertsch. 2012. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467-8474.
  • Kah, M. 2015. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3,1-6. 10.3389/fchem.2015.00064.
  • Kashyap, P.L. X. Xiang and P. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 77, 36-51.
  • Khan, Z. and H. Upadhyaya. 2019. Chapter 15 - Impact of Nanoparticles on Abiotic Stress Responses in Plants: An Overview. In: Nanomaterials in Plants, Algae and Microorganisms. Ed. Tripathi, D.K., Ahmad, P., Sharma S., Kumar Chauhan D. and Dubey, N.K. Academic Press, Cambridge. 2, 305-322
  • Khan, Z.S., M. Rizwan, M. Hafeez, S. Ali, M.R. Javed and M. Adrees. 2019. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ. Sci. Pollut. Res. Int. 26, 19859-19870
  • Konate, A., X. He, Z. Zhang, Y. Ma, P. Zhang, G.M. Alugongo and Y. Rui. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 9:(5),790.
  • Lee, W.M., Y.J. An, H. Yoon and H.S. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxic Chem. 27:(9),1915-1921
  • Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., Alvarez, P.J., 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29, 669-675.
  • Lin, D. and B. Zhing. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 150, 243.
  • Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392,397
  • Mahmoud, L.M., M. Dutt, A.M. Shalan, M.E. El-Kady, M.S. El-Boray, Y.M. Shabana and J.W. Grosser. 2020. Silicon nanoparticles mitigate oxidative stress of in vitro derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S. Afr. J. Bot. 132, 155-163.
  • Moameri, M., E. Alijafari, M. Abbasi Khalaki and A. Ghorbani. 2018a. Effects of nanopriming and biopriming on growth characteristics of Onobrychis sativa Lam. under laboratory conditions. Rangelands. 12:(1),101-111
  • Moameri, M., M. Jafari, A. Tavili, B. Motasharezadeh, M.A. Zare Chahouki and F. Madrid Diaz. 2018b. Investigating lead and zinc uptake and accumulation by Stipa hohenackeriana trin and rupr in field and pot experiments. Biosci J. 34,138-150
  • Moameri, M. and M. Abbasi Khalaki. 2019. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ Sci Pollut Res. 26,24315-24322
  • Najafi Disfani, M., A. Mikhak, M.Z. Kassaeec and A.H. Magharid. 2016. Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agro Soil Sci. 63:(6),817-826
  • Namasivayam, S.K.R. and K. Chitrakala. 2011. Ecotoxicological effect of Lecanicillium lecanii (Ascomycota: Hypocreales) based silver nanoparticles on growth parameters of economically important plants. J Biopesticides. 4,97-101
  • Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon. 7, e05981
  • Noman, M.; M. Shahid, T. Ahmed, M. Tahir, T. Naqqash, S. Muhammad, F. Song, H.M.A Abid, and Z.Aslam, 2020. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol. Environ. Saf. 192, 110303.
  • Parveen, A and, S. Rao. 2015. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci. 26:(3),693-701
  • Peyvandi, M., Z. Kamali Jamakani and M. Mirza. 2011a. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Satureja hortensis. New Cell Mol Biotech. 2:(5),25-32
  • Peyvandi, M., H. Parandeh and M. Mirza. 2011b. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum Basilicum. New Cell Mol Biotech. 1:(4),89-98
  • Raliya, R and J.C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2:(1),48-57
  • Ramezani, F., A. Shayanfar, R. Tavakkol Afshari and K. Rezaee. 2014. Effects of silver, nickel, zinc and zinc–copper nanoparticles on germination, seedling establishment and enzyme activity of alfalfa (Medicago sativa) seed. Iran J Field Crop Sci. 45:(1),107-118
  • Rahmatizadeh R., S.M. Javad Arvin, R. Jamei, H. Mozaffari and F.R. Nejhad. 2019. Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress, Journal of Plant Interactions. 14: (1), 474-481,
  • Rizwan, M., S. Ali, M.F. Qayyum, Y.S. Ok, M. Adrees, M. Ibrahim, M. Zia-Ur-Rehman, M. Farid and F. Abbas. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of hazardous materials. 322, 2-16.
  • Rizwan, M., S. Ali, M.Z.U. Rehman, M. Adrees, M. Arshad, M.F. Qayyum, A. Hussain, S.A.S. Chatha and M. Imran. 2019a. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 358-367, doi:10.1016/j.envpol.2019.02.031.
  • Rizwan, M., S. Noureen, S. Ali, S. Anwar, M.Z.U. Rehman, M.F. Qayyum and A. Hussain. 2019b. Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. J. Soils Sediments. 19, 3749-3759
  • Rossi, L., W. Zhang, L. Lombardini and X. Ma. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut. 219, 28-36
  • Rui, Y. 2021. Nanoparticles Alleviate Heavy Metals Stress. https://encyclopedia.pub/7093, (Accessed June 2, 2021)
  • Sedghi, M., H. Mitra and T. Sahar. 2013. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Annals of West University of Timisoara: Series of Biology. 16: (2), 73-78
  • Shallan, M.A., H.M. Hassan, A.A. Namich and A.A. Ibrahim. 2016. Biochemical and Physiological Effects of TiO2 and SiO2 Nanoparticles on Cotton Plant under Drought Stress. Research Journal of Pharmaceutical, Biological and Chemical. 7:(4), 1541
  • Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna and S. Arora. 2012. Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 167,2225-2233
  • Shaw, A.K., S. Ghosh, H.M. Kalaji, K. Bosa, M. Brestic, M. Zivcak and Z. Hossain. 2014. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot. 102,37-47
  • Siddiqui, M.H., A.O. Govorov and I. Carmeli. 2007. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect Lycopersicum esculentum. Nano Lett. 7:(3),620-625
  • Singh, J and B. Lee. 2016. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manag. 170, 88-96
  • Singh, M.D., H.M. Jayadeva, C. Gautam and H.M. Meena. 2017. Effects of nano zinc oxide particles on seedling growth of maize (Zea mays L.) in germinating paper test. Int J Microbiol Res. 9, 897.
  • Syu, Y.Y., J.H. Hung, J.C. Chen and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 83, 57-64.
  • Taran, N., V. Storozhenko, N. Svietlova, L. Batsmanova, V. Shvartau, and M. Kovalenko. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Research Letters. 12: (1),60.
  • Tavakkoli, E., P. Rengasamy and G. McDonald. 2010. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany. 61:(15), 4449-4459.
  • Torabian, S., M. Zahedi and A.H. Khoshgoftar. 2016. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 39, 172-180.
  • Tripathi, D.K., V.P. Singh, S.M. Prasad, D.K. Chauhan and N.K Dubey. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem. 96,189-98.
  • Tripathi, D.K., S. Singh, S. Singh, R. Pandey, V.P. Singh, N.C. Sharma, S.M. Prasad, N.K. Dubey, D.K. Chauhan., 2017. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110,2-12.
  • Usman, M., M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema, H. Rehman, I. Ashraf and M. Sanaullah. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. The Science of the Total Environment. 721,137778. doi: 10.1016/j.scitotenv.2020.137778.
  • Üçüncü Tunca, E. 2015. Nanoteknolojinin Temeli Nanopartiküller Ve Nanopartiküllerin Fitoremediasyonu. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 5(2),23-34
  • Van Nguyen, D., H.M. Nguyen, N.T. Le, K.H. Nguyen, H.T. Nguyen, H.M. Le, A.T. Nguyen, N.T.T. Dinh, S.A. Hoang and C.V. Ha. 2021. Copper Nanoparticle Application Enhances Plant Growth and Grain Yield in Maize Under Drought Stress Conditions. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10301-w, (Accessed June 1, 2021)
  • Wang, H., X. Kou, Z. Pei, J.Q. Xiao, X. Shani and B. Xing. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology. 5:(1),30-42
  • Wang, S., F. Wang and S. Gao. 2015. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. 22, 2837-2845
  • White, P. J. and P. Pongrac. 2017. Heavy-metal toxicity in plants. In: Plant stress physiology, ed. Shabala, S. 2, 300-331
  • Yang and D.J. Watts. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 158:(2), 122-32.
  • Ye, Y., I.A. Medina-Velo, K. Cota-Ruiz, F. Moreno-Olivas and J. Gardea-Torresdey. 2019. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and environmental safety. 184, 109671.
  • Yıldız, Ş. 2018. Kuraklık Stresi Altındaki Arpa Bitkilerinin Yapraklarına SiO2 Nanopartikül Uygulamasının Etkilerinin İncelenmesi. Mersin Üniversitesi. Fen Bilimleri Enstitüsü. Biyoteknoloji Anabilim Dalı. Yüksek Lisans Tezi. Mersin. 52 s.
  • Yosefzaei, F., L. Poorakbar and K. Farhadi. 2016. The effect of silver nanoparticles on morphological and physiological indexes of Ocimum basilicum L. Iranian J Plant Physiol Biochem. 1:(2),63-73
  • Yuan, J., Y. Chen, H. Li, J. Lu, H. Zhao, M. M. Liu, G.S. Nechitaylo and N.N. Glushchenko. 2018. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 8:(1),1-9
  • Zhang, S. 2019. Mechanism of Migration and Transformation of Nano Selenium and Mitigates Cadmium Stress in Plants. Retrieved from https://encyclopedia.pub/7093 Master’s Thesis, Shandong University, Jinan, China, 2019.
  • Zmeeva, O.N., E.B. Daibova, L.D. Proskurina, L.V. Petrova, N.E. Kolomiets, V.A. Svetlichnyi, I.N. Lapin and N.I. Kosova. 2017. Effects of silicon dioxide nanoparticles on biological and physiological characteristics of Medicago sativa L. nothosubsp. varia (Martyn) in natural agroclimatic conditions of the subtaiga zone in Western Siberia. BioNanoSci. 7,672-679

The Effect of Nanoparticle Applications on Plants under Some Stress Conditions

Year 2021, Volume: 2 Issue: 2, 52 - 62, 17.12.2021
https://doi.org/10.51801/turkjrfs.954843

Abstract

Plants are exposed to various abiotic stresses such as drought, salinity, high temperature, flooding and heavy metal stress. These stress factors have a significant negative effect on plant growth and yield and cause economic losses. Therefore, new approaches such as nanotechnology are used to reduce the harmful effects of these stresses on plants. Agricultural nanotechnology aims to improve sustainability in agriculture, to use water effectively and to protect against plant diseases, to eliminate environmental pollution and the effects of abiotic stress factors. Nanoparticles eliminate nutrient deficiencies in plants, increase the tolerance of plants to stress conditions by enabling the enzyme activities and the adhesion of bacteria that promote plant growth to the roots under abiotic stress conditions. In this review, the role of nanoparticles in ameliorating adverse effects on plants exposed to abiotic stress conditions will be emphasized.

References

  • Abbasi Khalaki, M., A. Ghorbani and M. Moameri. 2016. Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J Rangel Sci. 6:(3), 221-231
  • Abbasi Khalaki, M., A. Ghorbani and F. Dadjou. 2019a. Influence of nanopriming on Festuca ovina seed germination and early seedling traits under drought stress in Laboratory condition. Ecopersia. 7,133-139
  • Abbasi Khalaki, M., A. Ghorbani, A. Esmali Ouri, A.A. Shokouhian and A.A. Jafari. 2019b. Varying the vegetative and morphological traits of Thymus kotschyanus L. submitted to potassium silicate nanoparticles, superabsorbent hydrogel, effective microorganisms and animal manure. Biosci J. 35,115-125
  • Abbasi Khalaki, M., M. Moameri, B. Asgari Lajayer and T. Astatkie. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant growth regulation. 93, 13-28.
  • Abu-Hamdah, R., W.J. Cho, S.J. Cho, A. Jeremic, M. Kelly, A.E. Ilie and B.P. Jena. 2004. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol. Int. 28, 7-17.
  • Afshari, M., A. Pazoki and O. Sadeghipour. 2021. Foliar-applied Silicon and its Nanoparticles Stimulates Physio-chemical Changes to Improve Growth, Yield and Active Constituents of Coriander (Coriandrum Sativum L.) Essential oil Under Different Irrigation Regimes. Research Square. doi: 10.21203/rs.3.rs-176146/v1.
  • Ahmad, P., R. John, M. Sarwat and S. Umar. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod. 2:(4), 353-66.
  • Ahmad, B., A. Shabbir, H. Jaleel, M. Masroor, A. Khan and Y. Sadiq. 2018. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr Plant Biol. 13,6-15
  • Ali, S., M. Rizwan, S. Noureen, S. Anwar, B. Ali, M. Naveed, E.F. Abd Allah, A.A. Alqarawi and P. Ahmad. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ. Sci. Pollut. Res. 26, 11288-11299
  • Amooaghaie, R., F. Tabatabaei and A.M. Ahadi. 2015. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf. 113,259-270
  • Anoop, N. and A.K. Gupta. 2003. Transgenic indica rice cv IR-50 overexpressing Vigna aconitifolia d (1) pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. Journal of Plant Biochemistry and Biotechnology. 12,109-116.
  • Ashkavand, P., M. Tabari, M. Zarafshar, I. Tomášková and D. Struve. 2015. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Forest Research Papers. 76: (4),350-359
  • Askary, M., S.M. Talebi, F. Amini and A. Dousti Balout Bangan. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 63:(1),65-67.
  • Atha, D.H., H. Wang, E.J. Petersen, D. Cleveland, R.D. Holbrook, P. Jaruga, M. Dizdaroglu, B. Xing and B.C. Nelson. 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 46,1819-1827
  • Azimi, R., M. Jankju Borzelabad, H. Feizi and A. Azimi. 2014. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol. 16:(3),25-29
  • Bal, A. 2019. Yapraktan uygulanan kitosan, demiroksit ve kitosan-demiroksit kompleksi nanopartiküllerinin Hypericum triquetrifolium Turra'nın sekonder metabolitleri üzerine etkisi. Dicle Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Yüksek Lisans Tezi, Diyarbakır, 37 s.
  • Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. 15, 15-22. https://doi.org/10.1007/s10311-016-0600-4
  • Cinisli, K.T., S. Uçar ve N. Dikbaş. 2019. Nanomateryallerin Tarımda Kullanımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 29:(4),817-831
  • Darvishzadeh, F., F. Najatzadeh and A.R. Iranbakhsh. 2015. Effect of silver nanoparticles on salinity tolerance of basil plant in germination stages under laboratory conditions. J. Cell. Biotechnol. Mol. 20, 63-70.
  • Dastjerdi, E.B., I.B. Sahid and K.B. Jusoh. 2016. Phytotoxicity assessment of nano-zno on groundnut (Arachis hypogaea) seed germination in MS medium. Sains Malaysiana. 45, 1183.
  • de Sousa, A., A.M. Saleh, T.H. Habeeb, Y.M. Hassan, R. Zrieq, M.A.M. Wadaan, W.N. Hozzein, S. Selim, M. Matos and H. AbdElgawad. 2019. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci. Total Environ. 693, doi:10.1016/j.scitotenv.2019.133636.
  • Dehkourdi, E.H. and M. Mosavi. 2013. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res. 155:(2),283-286
  • Dietz, K.J and S. Herth. 2011. Plant nanotoxicology. Trends in plant science. 16:(11), 582-9.
  • Eichert, T., A. Kurtz, U. Steiner and H.E. Goldbach. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and watersuspended nanoparticles. Physiol. Plant. 134, 151-160.
  • Ekhtiyari, R. and F. Moraghebi. 2012. Effect of nanosilver particles on salinity tolerance of cumin (Cuminum cyminum L.). J. Plant Biotechnol. 25, 99-107.
  • El-Temsah, Y.S. and E.J. Joner. 2010. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 27,42-49
  • Eshi, Y., Y. Ezhang, W. Ehan, R. Efeng, Y. Ehu, J. Eguo and H.J. Gong. 2016. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. Front. Plant Sci. 7, 196.
  • Farid, M., M.B. Shakoor, A. Ehsan, S. Ali, M. Zubair and M.S. Hanif. 2013. Morphological, physiological and biochemical responses of different plant species to Cd stress. International Journal of Chemical and Biochemical Sciences. 3,53-60
  • Fazeli-Nasab, B., A.R. Sirousmehr and H. Azad. 2018. Effect of titanium dioxide nanoparticles on essential oil quantity and quality in Thymus vulgaris under water deficit. J Medicin Plants By-product. 2,125-133
  • Feizi, H., M. Kamali, L. Jafari and P.R. Moghaddam. 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 91:(4),506-511
  • Feng, Y., X. Cui, S. He, G. Dong, M. Chen, J. Wang and X. Lin. 2013. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol. 47:(16),9496-9504
  • Fleischer, A., M.A. O’Neill and R. Ehwald. 1999. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 12, 829-838.
  • García-López J.I., F. Zavala-García, E. Olivares-Sáenz, R.H. Lira-Saldívar, E.D. Barriga-Castro and N.A. Ruiz-Torres. 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy. 8,1-13
  • Güney, A., D.J. Pilbeam, A., Inal, E.G. Bağcı ve S. Coban. 2007. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stres. Journal of Plant Interactions. 2(2), 105-113
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 53:(366), 1-11
  • Hernandez, J.A., A. Jimenez, P.M. Mullineaux and F. Seviela. 2000. Tolerance of pea (Pisum sativum L.) to longterm salt stress is associated to induction of antioxidant defences. Plant Cell Environ. 23:(8), 853-862.
  • Hojjat, S.S. and M. Kamvab. 2017. Fenugreek seed germination under salinity levels. Russ. Agric. Sci. 43, 61-65.
  • Hojjat, S.S. 2019. Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. J Environ Soil Sci. 2(2), 186-191
  • Hong, J., C.M. Rico, L. Zhao, A.S. Adeleye, A.A. Keller, J.R. Peralta-Videa and J.L. Gardea-Torresdey. 2016. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci. 17,177-185
  • Hossain, P., J.A. Piyatida, T. da Silva and M. Fujita. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany. 872875, 37 p
  • Hossain, Z., G. Mustafa, K. Sakata and S. Komatsu. 2016. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J. Hazard. Mater. 304, 291-305.
  • Hossain, A., M. Skalicky, M. Brestic, S. Maitra, M. Ashraful Alam, M.A. Syed, J. Hossain, S. Sarkar, S. Saha, P. Bhadra, T. Shankar, R. Bhatt, A. Kumar Chaki, A. El Sabagh and T. Islam. 2021. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 11, 241. https://doi.org/10.3390/agronomy11020241
  • Hussain, A., S. Ali, M. Rizwan, M.Z.U. Rehman, M.F. Qayyum, H. Wang and J. Rinklebe. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol. Environ. Saf. 173, 156-164,
  • Jaberzadeh, A., P. Moaveni, H.R. Tohidi Moghadam and H. Zahedi. 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti Agrobot. Cluj-Napoca. 41,201-207.
  • Judy, J.D., J.M. Unrine, W. Rao, S. Wirick and P.M. Bertsch. 2012. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467-8474.
  • Kah, M. 2015. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3,1-6. 10.3389/fchem.2015.00064.
  • Kashyap, P.L. X. Xiang and P. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 77, 36-51.
  • Khan, Z. and H. Upadhyaya. 2019. Chapter 15 - Impact of Nanoparticles on Abiotic Stress Responses in Plants: An Overview. In: Nanomaterials in Plants, Algae and Microorganisms. Ed. Tripathi, D.K., Ahmad, P., Sharma S., Kumar Chauhan D. and Dubey, N.K. Academic Press, Cambridge. 2, 305-322
  • Khan, Z.S., M. Rizwan, M. Hafeez, S. Ali, M.R. Javed and M. Adrees. 2019. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ. Sci. Pollut. Res. Int. 26, 19859-19870
  • Konate, A., X. He, Z. Zhang, Y. Ma, P. Zhang, G.M. Alugongo and Y. Rui. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 9:(5),790.
  • Lee, W.M., Y.J. An, H. Yoon and H.S. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxic Chem. 27:(9),1915-1921
  • Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., Alvarez, P.J., 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29, 669-675.
  • Lin, D. and B. Zhing. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 150, 243.
  • Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392,397
  • Mahmoud, L.M., M. Dutt, A.M. Shalan, M.E. El-Kady, M.S. El-Boray, Y.M. Shabana and J.W. Grosser. 2020. Silicon nanoparticles mitigate oxidative stress of in vitro derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S. Afr. J. Bot. 132, 155-163.
  • Moameri, M., E. Alijafari, M. Abbasi Khalaki and A. Ghorbani. 2018a. Effects of nanopriming and biopriming on growth characteristics of Onobrychis sativa Lam. under laboratory conditions. Rangelands. 12:(1),101-111
  • Moameri, M., M. Jafari, A. Tavili, B. Motasharezadeh, M.A. Zare Chahouki and F. Madrid Diaz. 2018b. Investigating lead and zinc uptake and accumulation by Stipa hohenackeriana trin and rupr in field and pot experiments. Biosci J. 34,138-150
  • Moameri, M. and M. Abbasi Khalaki. 2019. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ Sci Pollut Res. 26,24315-24322
  • Najafi Disfani, M., A. Mikhak, M.Z. Kassaeec and A.H. Magharid. 2016. Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agro Soil Sci. 63:(6),817-826
  • Namasivayam, S.K.R. and K. Chitrakala. 2011. Ecotoxicological effect of Lecanicillium lecanii (Ascomycota: Hypocreales) based silver nanoparticles on growth parameters of economically important plants. J Biopesticides. 4,97-101
  • Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon. 7, e05981
  • Noman, M.; M. Shahid, T. Ahmed, M. Tahir, T. Naqqash, S. Muhammad, F. Song, H.M.A Abid, and Z.Aslam, 2020. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol. Environ. Saf. 192, 110303.
  • Parveen, A and, S. Rao. 2015. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci. 26:(3),693-701
  • Peyvandi, M., Z. Kamali Jamakani and M. Mirza. 2011a. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Satureja hortensis. New Cell Mol Biotech. 2:(5),25-32
  • Peyvandi, M., H. Parandeh and M. Mirza. 2011b. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum Basilicum. New Cell Mol Biotech. 1:(4),89-98
  • Raliya, R and J.C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2:(1),48-57
  • Ramezani, F., A. Shayanfar, R. Tavakkol Afshari and K. Rezaee. 2014. Effects of silver, nickel, zinc and zinc–copper nanoparticles on germination, seedling establishment and enzyme activity of alfalfa (Medicago sativa) seed. Iran J Field Crop Sci. 45:(1),107-118
  • Rahmatizadeh R., S.M. Javad Arvin, R. Jamei, H. Mozaffari and F.R. Nejhad. 2019. Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress, Journal of Plant Interactions. 14: (1), 474-481,
  • Rizwan, M., S. Ali, M.F. Qayyum, Y.S. Ok, M. Adrees, M. Ibrahim, M. Zia-Ur-Rehman, M. Farid and F. Abbas. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of hazardous materials. 322, 2-16.
  • Rizwan, M., S. Ali, M.Z.U. Rehman, M. Adrees, M. Arshad, M.F. Qayyum, A. Hussain, S.A.S. Chatha and M. Imran. 2019a. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 358-367, doi:10.1016/j.envpol.2019.02.031.
  • Rizwan, M., S. Noureen, S. Ali, S. Anwar, M.Z.U. Rehman, M.F. Qayyum and A. Hussain. 2019b. Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. J. Soils Sediments. 19, 3749-3759
  • Rossi, L., W. Zhang, L. Lombardini and X. Ma. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut. 219, 28-36
  • Rui, Y. 2021. Nanoparticles Alleviate Heavy Metals Stress. https://encyclopedia.pub/7093, (Accessed June 2, 2021)
  • Sedghi, M., H. Mitra and T. Sahar. 2013. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Annals of West University of Timisoara: Series of Biology. 16: (2), 73-78
  • Shallan, M.A., H.M. Hassan, A.A. Namich and A.A. Ibrahim. 2016. Biochemical and Physiological Effects of TiO2 and SiO2 Nanoparticles on Cotton Plant under Drought Stress. Research Journal of Pharmaceutical, Biological and Chemical. 7:(4), 1541
  • Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna and S. Arora. 2012. Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 167,2225-2233
  • Shaw, A.K., S. Ghosh, H.M. Kalaji, K. Bosa, M. Brestic, M. Zivcak and Z. Hossain. 2014. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot. 102,37-47
  • Siddiqui, M.H., A.O. Govorov and I. Carmeli. 2007. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect Lycopersicum esculentum. Nano Lett. 7:(3),620-625
  • Singh, J and B. Lee. 2016. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manag. 170, 88-96
  • Singh, M.D., H.M. Jayadeva, C. Gautam and H.M. Meena. 2017. Effects of nano zinc oxide particles on seedling growth of maize (Zea mays L.) in germinating paper test. Int J Microbiol Res. 9, 897.
  • Syu, Y.Y., J.H. Hung, J.C. Chen and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 83, 57-64.
  • Taran, N., V. Storozhenko, N. Svietlova, L. Batsmanova, V. Shvartau, and M. Kovalenko. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Research Letters. 12: (1),60.
  • Tavakkoli, E., P. Rengasamy and G. McDonald. 2010. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany. 61:(15), 4449-4459.
  • Torabian, S., M. Zahedi and A.H. Khoshgoftar. 2016. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 39, 172-180.
  • Tripathi, D.K., V.P. Singh, S.M. Prasad, D.K. Chauhan and N.K Dubey. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem. 96,189-98.
  • Tripathi, D.K., S. Singh, S. Singh, R. Pandey, V.P. Singh, N.C. Sharma, S.M. Prasad, N.K. Dubey, D.K. Chauhan., 2017. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110,2-12.
  • Usman, M., M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema, H. Rehman, I. Ashraf and M. Sanaullah. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. The Science of the Total Environment. 721,137778. doi: 10.1016/j.scitotenv.2020.137778.
  • Üçüncü Tunca, E. 2015. Nanoteknolojinin Temeli Nanopartiküller Ve Nanopartiküllerin Fitoremediasyonu. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 5(2),23-34
  • Van Nguyen, D., H.M. Nguyen, N.T. Le, K.H. Nguyen, H.T. Nguyen, H.M. Le, A.T. Nguyen, N.T.T. Dinh, S.A. Hoang and C.V. Ha. 2021. Copper Nanoparticle Application Enhances Plant Growth and Grain Yield in Maize Under Drought Stress Conditions. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10301-w, (Accessed June 1, 2021)
  • Wang, H., X. Kou, Z. Pei, J.Q. Xiao, X. Shani and B. Xing. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology. 5:(1),30-42
  • Wang, S., F. Wang and S. Gao. 2015. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. 22, 2837-2845
  • White, P. J. and P. Pongrac. 2017. Heavy-metal toxicity in plants. In: Plant stress physiology, ed. Shabala, S. 2, 300-331
  • Yang and D.J. Watts. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 158:(2), 122-32.
  • Ye, Y., I.A. Medina-Velo, K. Cota-Ruiz, F. Moreno-Olivas and J. Gardea-Torresdey. 2019. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and environmental safety. 184, 109671.
  • Yıldız, Ş. 2018. Kuraklık Stresi Altındaki Arpa Bitkilerinin Yapraklarına SiO2 Nanopartikül Uygulamasının Etkilerinin İncelenmesi. Mersin Üniversitesi. Fen Bilimleri Enstitüsü. Biyoteknoloji Anabilim Dalı. Yüksek Lisans Tezi. Mersin. 52 s.
  • Yosefzaei, F., L. Poorakbar and K. Farhadi. 2016. The effect of silver nanoparticles on morphological and physiological indexes of Ocimum basilicum L. Iranian J Plant Physiol Biochem. 1:(2),63-73
  • Yuan, J., Y. Chen, H. Li, J. Lu, H. Zhao, M. M. Liu, G.S. Nechitaylo and N.N. Glushchenko. 2018. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 8:(1),1-9
  • Zhang, S. 2019. Mechanism of Migration and Transformation of Nano Selenium and Mitigates Cadmium Stress in Plants. Retrieved from https://encyclopedia.pub/7093 Master’s Thesis, Shandong University, Jinan, China, 2019.
  • Zmeeva, O.N., E.B. Daibova, L.D. Proskurina, L.V. Petrova, N.E. Kolomiets, V.A. Svetlichnyi, I.N. Lapin and N.I. Kosova. 2017. Effects of silicon dioxide nanoparticles on biological and physiological characteristics of Medicago sativa L. nothosubsp. varia (Martyn) in natural agroclimatic conditions of the subtaiga zone in Western Siberia. BioNanoSci. 7,672-679
There are 99 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Review
Authors

İlkay Yavaş 0000-0002-6863-9631

Publication Date December 17, 2021
Submission Date June 20, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Yavaş, İ. (2021). The Effect of Nanoparticle Applications on Plants under Some Stress Conditions. Turkish Journal of Range and Forage Science, 2(2), 52-62. https://doi.org/10.51801/turkjrfs.954843
AMA Yavaş İ. The Effect of Nanoparticle Applications on Plants under Some Stress Conditions. Turk.J.R.For.Sci. December 2021;2(2):52-62. doi:10.51801/turkjrfs.954843
Chicago Yavaş, İlkay. “The Effect of Nanoparticle Applications on Plants under Some Stress Conditions”. Turkish Journal of Range and Forage Science 2, no. 2 (December 2021): 52-62. https://doi.org/10.51801/turkjrfs.954843.
EndNote Yavaş İ (December 1, 2021) The Effect of Nanoparticle Applications on Plants under Some Stress Conditions. Turkish Journal of Range and Forage Science 2 2 52–62.
IEEE İ. Yavaş, “The Effect of Nanoparticle Applications on Plants under Some Stress Conditions”, Turk.J.R.For.Sci., vol. 2, no. 2, pp. 52–62, 2021, doi: 10.51801/turkjrfs.954843.
ISNAD Yavaş, İlkay. “The Effect of Nanoparticle Applications on Plants under Some Stress Conditions”. Turkish Journal of Range and Forage Science 2/2 (December 2021), 52-62. https://doi.org/10.51801/turkjrfs.954843.
JAMA Yavaş İ. The Effect of Nanoparticle Applications on Plants under Some Stress Conditions. Turk.J.R.For.Sci. 2021;2:52–62.
MLA Yavaş, İlkay. “The Effect of Nanoparticle Applications on Plants under Some Stress Conditions”. Turkish Journal of Range and Forage Science, vol. 2, no. 2, 2021, pp. 52-62, doi:10.51801/turkjrfs.954843.
Vancouver Yavaş İ. The Effect of Nanoparticle Applications on Plants under Some Stress Conditions. Turk.J.R.For.Sci. 2021;2(2):52-6.

Cited By








     TR_Dizin_logo.png?version=1&modificationDate=1614345672000&api=v2  asos-index.png          logo.png    Crossref_Logo_Stacked_RGB_SMALL.png 1?ui=2&ik=a4058937f1&attid=0.3&permmsgid=msg-f:1749487628794806097&th=18476dbaad413f51&view=fimg&fur=ip&sz=s0-l75-ft&attbid=ANGjdJ9QGll0LXXhrpfkwxITnNQPMSCkjzPYtGlKAQeCi78zqusMPzJmW9Os0HX2VeTA31eRfyXCwOmU97TIQBEjf3rU8o_BbruviQKEDDHIC8oINFfNbOJLDrJPxfs&disp=emb




Turkish Journal of Range and Forage Science is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.