Review
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 2, 85 - 92, 07.12.2023
https://doi.org/10.51801/turkjrfs.1378258

Abstract

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727.
  • Carrasco-Gil, S., Estebaranz-Yubero, M., Medel-Cuesta, D., Millán, R., & Hernández, L. E. (2012). Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environmental and Experimental Botany, 75, 16-24.
  • Chamba-Eras, I., Griffith, D. M., Kalinhoff, C., Ramírez, J., & Gázquez, M. J. (2022). Native hyperaccumulator plants with differential phytoremediation potential in an artisanal gold mine of the Ecuadorian Amazon. Plants, 11(9), 1186.
  • Cheng, M., Wang, P., Kopittke, P. M., Wang, A., Sale, P. W., & Tang, C. (2016). Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. Journal of Experimental Botany, 67(17), 5041-5050.
  • Corami, A. (2023). Nanotechnologies and Phytoremediation: Pros and Cons. In Phytoremediation: Management of Environmental Contaminants, Volume 7 (pp. 403-426). Cham: Springer International Publishing.
  • de Anicésio, É. C. A., & Monteiro, F. A. (2019). Potassium affects the phytoextraction potential of Tanzania guinea grass under cadmium stress. Environmental Science and Pollution Research, 26, 30472-30484.
  • de Souza Cardoso, A. A., & Monteiro, F. A. (2021). Sulfur supply reduces barium toxicity in Tanzania guinea grass (Panicum maximum) by inducing antioxidant enzymes and proline metabolism. Ecotoxicology and Environmental Safety, 208, 111643.
  • de Sousa Leite, T., & Monteiro, F. A. (2019). Nitrogen form regulates cadmium uptake and accumulation in Tanzania guinea grass used for phytoextraction. Chemosphere, 236, 124324.
  • Delorme, T. A., Angle, J. S., Coale, F. J., & Chaney, R. L. (2000). Phytoremediation of phosphorus-enriched soils. International Journal of Phytoremediation, 2(2), 173-181.
  • Fakayode, S., & Onianwa, P. (2002). Heavy metal contamination of soil, and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja Industrial Estate, Lagos, Nigeria. Environmental Geology, 43, 145-150.
  • Gadi, B. R., Kumar, R., Goswami, B., Rankawat, R., & Rao, S. R. (2021). Recent developments in understanding fluoride accumulation, toxicity, and tolerance mechanisms in plants: An overview. Journal of Soil Science and Plant Nutrition, 21, 209-228.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., ... & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46.
  • Gilabel, A. P., Nogueirol, R. C., Garbo, A. I., & Monteiro, F. A. (2014). The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water, Air, & Soil Pollution, 225, 1-10.
  • Gonçalves, J. M., & Monteiro, F. A. (2023). Biomass production and uptake of sulfur, chromium and micronutrients by Tanzania guinea grass grown with sulfur and chromium. Environmental Geochemistry and Health, 45(1), 53-65.
  • Hasan, M. M., Uddin, M. N., Ara-Sharmeen, I., F. Alharby, H., Alzahrani, Y., Hakeem, K. R., & Zhang, L. (2019). Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9), 295.
  • Huo, W., Zhuang, C. H., Cao, Y., Pu, M., Yao, H., Lou, L. Q., & Cai, Q. S. (2012). Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 34, 139-150.
  • Javanmardi, E., Javanmardi, M., & Berton, R. (2022). Biomonitoring efforts to evaluate the extent of heavy metals pollution induced by cement industry in Shiraz, Iran. International Journal of Environmental Science and Technology, 19(12), 11711-11728.
  • Jiamjitrpanich, W., Parkpian, P., Polprasert, C., & Kosanlavit, R. (2012). Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron. In 2nd International Conference on Environment and Industrial Innovation IPCBEE (Vol. 35, pp. 82-86).
  • Kumar, A., Das, S. K., Nainegali, L., & Reddy, K. R. (2023). Phytostabilization of coalmine overburden waste rock dump slopes: current status, challenges, and perspectives. Bulletin of Engineering Geology and the Environment, 82(4), 130.
  • Lamichhane, K. M., Babcock Jr, R. W., Turnbull, S. J., & Schenck, S. (2012). Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. Journal of Hazardous Materials, 243, 334-339.
  • Marzban, L., Akhzari, D., Ariapour, A., Mohammadparast, B., & Pessarakli, M. (2017). Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): Growth, physiological traits, and cadmium accumulation. Journal of Plant Nutrition, 40(15), 2127-2137.
  • McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515-535.
  • Monteiro, F. A., Nogueirol, R. C., Melo, L. C. A., Artur, A. G., & da Rocha, F. (2011). Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Communications in Soil Science and Plant Analysis, 42(13), 1510-1521.
  • Newman, Y. C., Agyin‐Birikorang, S., Adjei, M. B., Scholberg, J. M., Silveira, M. L., Vendramini, J. M. B., ... & Chrysostome, M. (2009). Enhancing Phosphorus Phytoremedation Potential of Two Warm‐Season Perennial Grasses with Nitrogen Fertilization. Agronomy Journal, 101(6), 1345-1351.
  • Nwadinigwe, A. O., & Ugwu, E. C. (2018). Overview of nano-phytoremediation applications. Phytoremediation: Management of Environmental Contaminants, Volume 6, 377-382.
  • Oza, G., Reyes-Calderón, A., Mewada, A., Arriaga, L. G., Cabrera, G. B., Luna, D. E., ... & Sharma, A. (2020). Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. Journal of Materials Science, 55, 1309-1330.
  • Paquin, D. G., Campbell, S., & Li, Q. X. (2004). Phytoremediation in subtropical Hawaii—a review of over 100 plant species. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques, 14(2), 127-139.
  • Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 351, 317-329.
  • Prommarach, T., Pholsen, S., Shivaraju, H. P., & Chareonsudjai, P. (2022). Growth and biosorption of Purple guinea and Ruzi grasses in arsenic contaminated soils. Environmental Monitoring and Assessment, 194(2), 85.
  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017a). Proper supply of S increases GSH synthesis in the establishment and reduces tiller mortality during the regrowth of Tanzania guinea grass used for Cd phytoextraction. Journal of Soils and Sediments, 17, 1427-1436.
  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017b). The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania guinea grass used for Cd phytoextraction. Water, Air, & Soil Pollution, 228, 1-17.
  • Rabêlo, F. H. S., de Andrade Moral, R., & Lavres, J. (2019). Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, & Soil Pollution, 230, 1-15.
  • Rabêlo, F. H. S., Jordao, L. T., & Lavres, J. (2017c). A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction. Plant Physiology and Biochemistry, 121, 48-57.
  • Rabêlo, F. H., Borgo, L., & Lavres, J. (2018a). The use of forage grasses for the phytoremediation of heavy metals: plant tolerance mechanisms, classifications, and new prospects. Phytoremediation: Methods, Management and Assessment, 59-103.
  • Rabêlo, F. H. S., Lux, A., Rossi, M. L., Martinelli, A. P., Cuypers, A., & Lavres, J. (2018b). Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environmental and Experimental Botany, 148, 35-46.
  • Rabêlo, F. H. S., Fernie, A. R., Navazas, A., Borgo, L., Keunen, E., da Silva, B. K. D. A., ... & Lavres, J. (2018c). A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environmental and Experimental Botany, 151, 76-88.
  • Rabêlo, F. H. S., da Silva, B. K. D. A., Borgo, L., Keunen, E., Rossi, M. L., Borges, K. L. R., ... & Lavres, J. (2018d). Enzymatic antioxidants—Relevant or not to protect the photosynthetic system against cadmium-induced stress in Massai grass supplied with sulfur?. Environmental and Experimental Botany, 155, 702-717.
  • Ram, S. N. (2009). Production potential, biological feasibility and economics of guinea grass (Stylosanthes hamata) intercropping systems under various fertility levels in rainfed conditions. Indian Journal of Agricultural Sciences, 79(11), 871-875.
  • Sajjad, M., Huang, Q., Khan, S., Khan, M. A., Liu, Y., Wang, J., ... & Guo, G. (2022). Microplastics in the soil environment: A critical review. Environmental Technology & Innovation, 27, 102408.
  • Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946-962.
  • Seth, C. S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J., Cuypers, A., (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant, Cell & Environment, 35, 334–346
  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: a review. Pedosphere, 26(2), 148-166.
  • Silva, E. B., Fonseca, F. G., Alleoni, L. R., Nascimento, S. S., Grazziotti, P. H., & Nardis, B. O. (2016). Availability and toxicity of cadmium to forage grasses grown in contaminated soil. International Journal of Phytoremediation, 18(9), 847-852.
  • Singh, S. N., & Mishra, S. (2014). Phytoremediation of TNT and RDX. Biological Remediation of Explosive Residues, 371-392.
  • Silveira, M. L., Vendramini, J. M., Sui, X., Sollenberger, L., & O’Connor, G. A. (2013). Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Research, 6, 469-475.
  • Stritsis, C., & Claassen, N. (2013). Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant and Soil, 367, 591-603.
  • Surmen, M., Erdogan, H., Ozeroglu A. & Kara E. (2018). The Effects of Different Salt Concentrations on Germination and Early Seedling Period Characteristics of Grass Plants. International Congress on Agriculture and Forestry Research, 8-10 April 2018. Marmaris/Turkiye.
  • Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F. M., ... & Dejonghe, W. (2007). Phytoremediation for heavy metal‐contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management, 15(4), 227-236.
  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., ... & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765-794.
  • Vieira Filho, L. O., & Monteiro, F. A. (2020). Silicon modulates copper absorption and increases yield of Tanzania guinea grass under copper toxicity. Environmental Science and Pollution Research, 27, 31221-31232.
  • Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., ... & Sonne, C. (2021). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403, 123658.
  • Xiao, L., Yu, Z., Liu, H., Tan, T., Yao, J., Zhang, Y., & Wu, J. (2020). Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology, 29, 551-558.
  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.
  • Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A review on phytoremediation of crude oil spills. Water, Air, & Soil Pollution, 226, 1-18.

Phytoremediation by Guinea grass (Panicum maximum): A Focused Review

Year 2023, Volume: 4 Issue: 2, 85 - 92, 07.12.2023
https://doi.org/10.51801/turkjrfs.1378258

Abstract

Environmental contamination from heavy metals has grown to be a significant problem on a global basis. Due to the mobilisation of heavy metals during ore extraction and subsequent processing for diverse applications, they have been dispersed into the environment. Utilising plants for pollutant extraction, degradation, or volatilization is possible. Using plants and the bacteria that live on them to clean up the environment is known as phytoremediation.
The bioaccumulation of elements in the body tissues of hyperaccumulator plants is used in phytoextraction, phytofiltration, phytostabilization, phytovolatilization, phytodesalination, and phytomining processes. As they move from low trophic levels to high trophic levels, their concentrations rise (a process also named as biomagnification). Recent studies indicates ability of Panicum maximum to clean places that have been contaminated with diversifed heavy metals and other types of pollution.

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727.
  • Carrasco-Gil, S., Estebaranz-Yubero, M., Medel-Cuesta, D., Millán, R., & Hernández, L. E. (2012). Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environmental and Experimental Botany, 75, 16-24.
  • Chamba-Eras, I., Griffith, D. M., Kalinhoff, C., Ramírez, J., & Gázquez, M. J. (2022). Native hyperaccumulator plants with differential phytoremediation potential in an artisanal gold mine of the Ecuadorian Amazon. Plants, 11(9), 1186.
  • Cheng, M., Wang, P., Kopittke, P. M., Wang, A., Sale, P. W., & Tang, C. (2016). Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. Journal of Experimental Botany, 67(17), 5041-5050.
  • Corami, A. (2023). Nanotechnologies and Phytoremediation: Pros and Cons. In Phytoremediation: Management of Environmental Contaminants, Volume 7 (pp. 403-426). Cham: Springer International Publishing.
  • de Anicésio, É. C. A., & Monteiro, F. A. (2019). Potassium affects the phytoextraction potential of Tanzania guinea grass under cadmium stress. Environmental Science and Pollution Research, 26, 30472-30484.
  • de Souza Cardoso, A. A., & Monteiro, F. A. (2021). Sulfur supply reduces barium toxicity in Tanzania guinea grass (Panicum maximum) by inducing antioxidant enzymes and proline metabolism. Ecotoxicology and Environmental Safety, 208, 111643.
  • de Sousa Leite, T., & Monteiro, F. A. (2019). Nitrogen form regulates cadmium uptake and accumulation in Tanzania guinea grass used for phytoextraction. Chemosphere, 236, 124324.
  • Delorme, T. A., Angle, J. S., Coale, F. J., & Chaney, R. L. (2000). Phytoremediation of phosphorus-enriched soils. International Journal of Phytoremediation, 2(2), 173-181.
  • Fakayode, S., & Onianwa, P. (2002). Heavy metal contamination of soil, and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja Industrial Estate, Lagos, Nigeria. Environmental Geology, 43, 145-150.
  • Gadi, B. R., Kumar, R., Goswami, B., Rankawat, R., & Rao, S. R. (2021). Recent developments in understanding fluoride accumulation, toxicity, and tolerance mechanisms in plants: An overview. Journal of Soil Science and Plant Nutrition, 21, 209-228.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., ... & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46.
  • Gilabel, A. P., Nogueirol, R. C., Garbo, A. I., & Monteiro, F. A. (2014). The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water, Air, & Soil Pollution, 225, 1-10.
  • Gonçalves, J. M., & Monteiro, F. A. (2023). Biomass production and uptake of sulfur, chromium and micronutrients by Tanzania guinea grass grown with sulfur and chromium. Environmental Geochemistry and Health, 45(1), 53-65.
  • Hasan, M. M., Uddin, M. N., Ara-Sharmeen, I., F. Alharby, H., Alzahrani, Y., Hakeem, K. R., & Zhang, L. (2019). Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9), 295.
  • Huo, W., Zhuang, C. H., Cao, Y., Pu, M., Yao, H., Lou, L. Q., & Cai, Q. S. (2012). Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 34, 139-150.
  • Javanmardi, E., Javanmardi, M., & Berton, R. (2022). Biomonitoring efforts to evaluate the extent of heavy metals pollution induced by cement industry in Shiraz, Iran. International Journal of Environmental Science and Technology, 19(12), 11711-11728.
  • Jiamjitrpanich, W., Parkpian, P., Polprasert, C., & Kosanlavit, R. (2012). Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron. In 2nd International Conference on Environment and Industrial Innovation IPCBEE (Vol. 35, pp. 82-86).
  • Kumar, A., Das, S. K., Nainegali, L., & Reddy, K. R. (2023). Phytostabilization of coalmine overburden waste rock dump slopes: current status, challenges, and perspectives. Bulletin of Engineering Geology and the Environment, 82(4), 130.
  • Lamichhane, K. M., Babcock Jr, R. W., Turnbull, S. J., & Schenck, S. (2012). Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. Journal of Hazardous Materials, 243, 334-339.
  • Marzban, L., Akhzari, D., Ariapour, A., Mohammadparast, B., & Pessarakli, M. (2017). Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): Growth, physiological traits, and cadmium accumulation. Journal of Plant Nutrition, 40(15), 2127-2137.
  • McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515-535.
  • Monteiro, F. A., Nogueirol, R. C., Melo, L. C. A., Artur, A. G., & da Rocha, F. (2011). Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Communications in Soil Science and Plant Analysis, 42(13), 1510-1521.
  • Newman, Y. C., Agyin‐Birikorang, S., Adjei, M. B., Scholberg, J. M., Silveira, M. L., Vendramini, J. M. B., ... & Chrysostome, M. (2009). Enhancing Phosphorus Phytoremedation Potential of Two Warm‐Season Perennial Grasses with Nitrogen Fertilization. Agronomy Journal, 101(6), 1345-1351.
  • Nwadinigwe, A. O., & Ugwu, E. C. (2018). Overview of nano-phytoremediation applications. Phytoremediation: Management of Environmental Contaminants, Volume 6, 377-382.
  • Oza, G., Reyes-Calderón, A., Mewada, A., Arriaga, L. G., Cabrera, G. B., Luna, D. E., ... & Sharma, A. (2020). Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. Journal of Materials Science, 55, 1309-1330.
  • Paquin, D. G., Campbell, S., & Li, Q. X. (2004). Phytoremediation in subtropical Hawaii—a review of over 100 plant species. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques, 14(2), 127-139.
  • Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 351, 317-329.
  • Prommarach, T., Pholsen, S., Shivaraju, H. P., & Chareonsudjai, P. (2022). Growth and biosorption of Purple guinea and Ruzi grasses in arsenic contaminated soils. Environmental Monitoring and Assessment, 194(2), 85.
  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017a). Proper supply of S increases GSH synthesis in the establishment and reduces tiller mortality during the regrowth of Tanzania guinea grass used for Cd phytoextraction. Journal of Soils and Sediments, 17, 1427-1436.
  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017b). The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania guinea grass used for Cd phytoextraction. Water, Air, & Soil Pollution, 228, 1-17.
  • Rabêlo, F. H. S., de Andrade Moral, R., & Lavres, J. (2019). Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, & Soil Pollution, 230, 1-15.
  • Rabêlo, F. H. S., Jordao, L. T., & Lavres, J. (2017c). A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction. Plant Physiology and Biochemistry, 121, 48-57.
  • Rabêlo, F. H., Borgo, L., & Lavres, J. (2018a). The use of forage grasses for the phytoremediation of heavy metals: plant tolerance mechanisms, classifications, and new prospects. Phytoremediation: Methods, Management and Assessment, 59-103.
  • Rabêlo, F. H. S., Lux, A., Rossi, M. L., Martinelli, A. P., Cuypers, A., & Lavres, J. (2018b). Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environmental and Experimental Botany, 148, 35-46.
  • Rabêlo, F. H. S., Fernie, A. R., Navazas, A., Borgo, L., Keunen, E., da Silva, B. K. D. A., ... & Lavres, J. (2018c). A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environmental and Experimental Botany, 151, 76-88.
  • Rabêlo, F. H. S., da Silva, B. K. D. A., Borgo, L., Keunen, E., Rossi, M. L., Borges, K. L. R., ... & Lavres, J. (2018d). Enzymatic antioxidants—Relevant or not to protect the photosynthetic system against cadmium-induced stress in Massai grass supplied with sulfur?. Environmental and Experimental Botany, 155, 702-717.
  • Ram, S. N. (2009). Production potential, biological feasibility and economics of guinea grass (Stylosanthes hamata) intercropping systems under various fertility levels in rainfed conditions. Indian Journal of Agricultural Sciences, 79(11), 871-875.
  • Sajjad, M., Huang, Q., Khan, S., Khan, M. A., Liu, Y., Wang, J., ... & Guo, G. (2022). Microplastics in the soil environment: A critical review. Environmental Technology & Innovation, 27, 102408.
  • Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946-962.
  • Seth, C. S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J., Cuypers, A., (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant, Cell & Environment, 35, 334–346
  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: a review. Pedosphere, 26(2), 148-166.
  • Silva, E. B., Fonseca, F. G., Alleoni, L. R., Nascimento, S. S., Grazziotti, P. H., & Nardis, B. O. (2016). Availability and toxicity of cadmium to forage grasses grown in contaminated soil. International Journal of Phytoremediation, 18(9), 847-852.
  • Singh, S. N., & Mishra, S. (2014). Phytoremediation of TNT and RDX. Biological Remediation of Explosive Residues, 371-392.
  • Silveira, M. L., Vendramini, J. M., Sui, X., Sollenberger, L., & O’Connor, G. A. (2013). Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Research, 6, 469-475.
  • Stritsis, C., & Claassen, N. (2013). Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant and Soil, 367, 591-603.
  • Surmen, M., Erdogan, H., Ozeroglu A. & Kara E. (2018). The Effects of Different Salt Concentrations on Germination and Early Seedling Period Characteristics of Grass Plants. International Congress on Agriculture and Forestry Research, 8-10 April 2018. Marmaris/Turkiye.
  • Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F. M., ... & Dejonghe, W. (2007). Phytoremediation for heavy metal‐contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management, 15(4), 227-236.
  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., ... & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765-794.
  • Vieira Filho, L. O., & Monteiro, F. A. (2020). Silicon modulates copper absorption and increases yield of Tanzania guinea grass under copper toxicity. Environmental Science and Pollution Research, 27, 31221-31232.
  • Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., ... & Sonne, C. (2021). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403, 123658.
  • Xiao, L., Yu, Z., Liu, H., Tan, T., Yao, J., Zhang, Y., & Wu, J. (2020). Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology, 29, 551-558.
  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.
  • Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A review on phytoremediation of crude oil spills. Water, Air, & Soil Pollution, 226, 1-18.
There are 55 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Review
Authors

Feyza Döndü Bilgin 0000-0002-7435-4130

Publication Date December 7, 2023
Submission Date October 19, 2023
Acceptance Date November 29, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Bilgin, F. D. (2023). Phytoremediation by Guinea grass (Panicum maximum): A Focused Review. Turkish Journal of Range and Forage Science, 4(2), 85-92. https://doi.org/10.51801/turkjrfs.1378258
AMA Bilgin FD. Phytoremediation by Guinea grass (Panicum maximum): A Focused Review. Turk.J.R.For.Sci. December 2023;4(2):85-92. doi:10.51801/turkjrfs.1378258
Chicago Bilgin, Feyza Döndü. “Phytoremediation by Guinea Grass (Panicum maximum): A Focused Review”. Turkish Journal of Range and Forage Science 4, no. 2 (December 2023): 85-92. https://doi.org/10.51801/turkjrfs.1378258.
EndNote Bilgin FD (December 1, 2023) Phytoremediation by Guinea grass (Panicum maximum): A Focused Review. Turkish Journal of Range and Forage Science 4 2 85–92.
IEEE F. D. Bilgin, “Phytoremediation by Guinea grass (Panicum maximum): A Focused Review”, Turk.J.R.For.Sci., vol. 4, no. 2, pp. 85–92, 2023, doi: 10.51801/turkjrfs.1378258.
ISNAD Bilgin, Feyza Döndü. “Phytoremediation by Guinea Grass (Panicum maximum): A Focused Review”. Turkish Journal of Range and Forage Science 4/2 (December 2023), 85-92. https://doi.org/10.51801/turkjrfs.1378258.
JAMA Bilgin FD. Phytoremediation by Guinea grass (Panicum maximum): A Focused Review. Turk.J.R.For.Sci. 2023;4:85–92.
MLA Bilgin, Feyza Döndü. “Phytoremediation by Guinea Grass (Panicum maximum): A Focused Review”. Turkish Journal of Range and Forage Science, vol. 4, no. 2, 2023, pp. 85-92, doi:10.51801/turkjrfs.1378258.
Vancouver Bilgin FD. Phytoremediation by Guinea grass (Panicum maximum): A Focused Review. Turk.J.R.For.Sci. 2023;4(2):85-92.

     TR_Dizin_logo.png?version=1&modificationDate=1614345672000&api=v2  asos-index.png          logo.png    Crossref_Logo_Stacked_RGB_SMALL.png 1?ui=2&ik=a4058937f1&attid=0.3&permmsgid=msg-f:1749487628794806097&th=18476dbaad413f51&view=fimg&fur=ip&sz=s0-l75-ft&attbid=ANGjdJ9QGll0LXXhrpfkwxITnNQPMSCkjzPYtGlKAQeCi78zqusMPzJmW9Os0HX2VeTA31eRfyXCwOmU97TIQBEjf3rU8o_BbruviQKEDDHIC8oINFfNbOJLDrJPxfs&disp=emb




Turkish Journal of Range and Forage Science is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.