Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 1, 67 - 79, 01.07.2024
https://doi.org/10.51801/turkjrfs.1466889

Abstract

Project Number

not applicable

References

  • Alebele, Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H., ... & Cheng, T. (2020). Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target Gaussian regressor stacking. Remote Sensing, 12(16), 2564.
  • Allen, R., Pereira, L., Raes, D. & Smith, M. (1998). Crop evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage paper, 56. Rome, Italy.
  • Arriaga, F., Guzman, J. & Lowery, B. (2017). Conventional Agricultural Production Systems and Soil Functions. In: Mahdi et al (ed) Soil Health and Intensification of Agroecosys. Academic Press. https://doi.org/10.1016/B978-0-12-805317-1.00005-1
  • Belmans, C., Wesseling, J. & Feddes, R. (1983). Simulation of the water balance of a cropped soil: SWATRE. J. Hydrol. 63, 271–286
  • Benabderrahim, M. & Walid E. (2021). Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits. Agronomy 11(6) 1071. https://doi.org/10.3390/agronomy11061071
  • Boke-Olén, N., Lehsten, V., Abdi, A. M., Ardö, J., & Khatir, A. A. (2018). Estimating Grazing Potentials in Sudan Using Daily Carbon Allocation in Dynamic Vegetation Model. Rangeland Ecology & Management, 71(6), 792-797. https://doi.org/10.1016/j.rama.2018.06.006
  • Calera, A., Campos, I., Osann A, D'Urso, G. & Menenti, M. (2017). Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors (Basel). 2017 May 11;17(5):1104. doi: 10.3390/s17051104. PMID: 28492515; PMCID: PMC5470494
  • Catunda, K. L., Churchill, A. C., Power, S. A., Zhang, H., Fuller, K. J., & Moore, B. D. (2021). Plant structural and nutritional responses to drought differ among common pasture species. bioRxiv, 2021-10.
  • Chandregowda, M., Tjoelker, Power, S. & Pendall, E. (2022). Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Plant, Cell, & Environ. 45, (8), 2271-2291. https://doi.org/10.1111/pce.14334
  • Churchill, A. C., Zhang, H., Fuller, K. J., Amiji, B., Anderson, I. C., Barton, C. V., ... & Power, S. A. (2022). Pastures and climate extremes: impacts of cool season warming and drought on the productivity of key pasture species in a field experiment. Frontiers in plant science, 13, 836968.
  • Critchley, W., Siegert, K. & Chapman, C. (1991) Rainwater harvesting. A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. FAO, Rome, Italy.
  • de Jesus, F. L. F., Sanches, A. C., de Souza, D. P., Mendonça, F. C., Gomes, E. P., Santos, R. C., ... & da Silva, J. L. B. (2021). Seasonality of biomass production of irrigated Mombaça ‘Guinea grass’. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(3), 156-164.
  • de Oliveira, F.., César, Rodrigo, Lilla M., José, L. & Albuquerque, F. (2018). Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae 4, no. 4: 44. https://doi.org/10.3390/horticulturae4040044
  • de Oliveira, E. M. D., Martuscello, J. A., Jank, L., Cunha, D. D. N. F. V. D., & Santos, M. F. (2022). Evaluation of Megathyrsus maximus genotypes under water stress conditions. Acta Scientiarum. Animal Sciences, 44, e54975.
  • Deo, T. G., Ferreira, R. C., Lara, L. A., Moraes, A. C., Alves-Pereira, A., De Oliveira, F. A., ... & de Souza, A. P. (2020). High-resolution linkage map with allele dosage allows the identification of regions governing complex traits and apospory in guinea grass (Megathyrsus maximus). Frontiers in plant science, 11, 15.
  • di Virgilio, A., Lambertucci, S. A., & Morales, J. M. (2019). Sustainable grazing management in rangelands: Over a century searching for a silver bullet. Agriculture, Ecosystems & Environment, 283, 106561. https://doi.org/10.1016/j.agee.2019.05.020
  • Ding, R., Kang, S., Du, T., Hao, X., & Tong, L. (2015). Modeling crop water use in an irrigated maize cropland using a biophysical process-based model. Journal of Hydrology, 529, 276-286.
  • Hatfield, J. & Dold C. (2019). Water-Use Efficiency: Advances and Challenges in a Changing Climate. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.00103
  • IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla P, Skea J, Calvo Buendia E et al (ed). In press.
  • Isabel, J., Mazabel, J. & Jose, N.. (2021). Classification of Megathyrsus Maximus Accessions Grown in the Colombian Dry Tropical Forest by Nutritional Assessment During Contrasting Seasons. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.684747
  • Jayasinghe, P., Donaghy, D. J., Barber, D. G., Pembleton, K. G., & Ramilan, T. (2022). Suitability evaluation of three tropical pasture species (Mulato II, Gatton Panic, and Rhodes Grass) for cultivation under a subtropical climate of Australia. Agronomy, 12(9), 2032.
  • Lamede, F., Sanches, A.. et al.. (2021). Production and water-use efficiency of Megathyrsus maximus cv. Mombaça "Guinea grass" under nitrogen and boron doses. Semina: Ciênc. Agrár. Londrina, v. 42, n. 4, p. 2217-2232, jul./ago. 2021
  • Leng, G. & Hall, J. (2020) Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models. Environ Res Lett 15: 044027. https://doi.org/10.1088/1748-9326/ab7b24
  • Macedo, V. H. M., Lage Filho, N. M., Cunha, A. M. Q., Lopes, M. N., da Silva, R. G., Cutrim Junior, J. A. A., ... & do Rêgo, A. C. (2022). Agrometeorological and Agronomic Characterization of Megathyrsus Grasses Cultivated in Tropical Humid and Semi-Arid Conditions: A Multivariate Approach. Frontiers in Plant Science, 13, 809377.
  • Mganga, K. Z., Bosma, L., Amollo, K. O., Kioko, T., Kadenyi, N., Ndathi, A. J., ... & van Steenbergen, F. (2022). Combining rainwater harvesting and grass reseeding to revegetate denuded African semi-arid landscapes. Anthropocene Science, 1(1), 80-90.
  • Mohamed, H., Ahmed, S. & Mohamed, A. (2021). Modeling selected ecological interactions of Panicum maximum in a semi-dry environment enhanced with in situ rainwater harvesting systems. Model. Earth Syst. Environ. https://doi.org/10.1007/s40808-021-01282-6
  • Motta-Delgado, P. A., Ocaña Martínez, H. E. & Rojas-Vargas, E. P. (2019). Indicators associated to pastures sustainability: a review. Ciencia y Tecnología Agropecuaria, 20(2), 409-430 DOI: https://doi.org/10.21930/rcta.vol20_num2_art:1464
  • Mupangwa, W., Chipindu, L., Nyagumbo, I., Mkuhlani, S., & Sisito, G. (2020). Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa. SN Applied Sciences, 2(5), 952.
  • Pereira, L., & Alves, I.. (2005). Crop water requirements. Encyclopedia of Soils in the Environment, 322-334. https://doi.org/10.1016/B0-12-348530-4/00255-1
  • Pezzopane, J. R. M., Santos, P. M., Evangelista, S. R. M., Bosi, C., Cavalcante, A. C. R., Bettiol, G. M., ... & Pellegrino, G. Q. (2017). Panicum maximum cv. Tanzânia: climate trends and regional pasture production in Brazil. Grass and Forage Science, 72(1), 104-117.
  • Rahman, A. (2017) Recent Advances in Modelling and Implementation of Rainwater Harvesting Systems towards Sustainable Development. Water 9, no. 12: 959. https://doi.org/10.3390/w9120959
  • Ram, S. & Trivedi B. (2012). Response of Guinea grass (Panicum maximum Jacq) to nitrogen, farm yard, manure and harvest intervals. Forage Res., 38 (1): 49-52
  • Sanches, A. C., Souza, D. P. D., Jesus, F. L. F. D., Mendonça, F. C., & Gomes, E. P. (2019). Crop coefficients of tropical forage crops, single cropped and overseeded with black oat and ryegrass. Scientia Agricola, 76, 448-458.
  • Santos, P., Thornton, B. & Corsi, M. (2012). Dry mass production and persistence of Panicum maximum pastures depends on nitrogen supply. Animal Science and Pastures • Sci. Agric. (Piracicaba, Braz.) 69 (5). https://doi.org/10.1590/S0103-90162012000500002
  • Singh, R., Kumar S., Bala, A. & Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 213, 922-933. https://doi.org/10.1016/j.agwat.2018.12.002
  • Soti, P. & Thomas, V. (2021) Review of the invasive forage Grass, Guinea grass (Megathyrsus maximus): Ecology and potential impacts in arid and semi-arid regions. Weed Research, 00, 1– 7. https://doi.org/ 10.1111/wre.12512
  • Steduto, P., Hsiao, T., Fereres, E. & Raes, D. (2012) crop yield response to water. FAO Irrigation and Drainage Paper 66. Rome, Italy.
  • Strock, C. F., Rangarajan, H., Black, C. K., Schäfer, E. D., & Lynch, J. P. (2022). Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture. Annals of botany, 129(3), 315-330.
  • Yang, R., Liu, L., Liu, Q., Li, X., Yin, L., Hao, X., ... & Song, Q. (2022). Validation of leaf area index measurement system based on wireless sensor network. Scientific Reports, 12(1), 4668.

Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa

Year 2024, Volume: 5 Issue: 1, 67 - 79, 01.07.2024
https://doi.org/10.51801/turkjrfs.1466889

Abstract

Ongoing efforts are currently being made to rehabilitate drought-affected pastures in Sub-Saharan Africa. One approach being explored is the introduction of non-native grass species, such as Megathyrsus maximus (Guinea grass). This study aims to investigate the water use of Guinea grass in semi-arid environments under rainfed conditions. Additionally, it aims to a better understanding of the variability of water use in Guinea grass through the utilization of the Bagging machine learning algorithm. Split-plot field experiments were carried out over two consecutive rainy seasons (2020-2021). The treatments included two in-situ rainwater harvesting practices, RWH (ridging plus terracing and terracing alone), three seeding rates, SR (1.5, 2.5, and 3.5 kg ha-1), and two soil nitrogen fertilization rates, SF (95 kg N ha-1 and 0 kg N ha-1). These treatments were compared to a control plot that involved zero-tillage, no fertilization, and no rainwater harvesting. The collected datasets were analyzed using R, SPSS 15, and spreadsheets. The results showed significant differences in plant indices and soil moisture content among the treatments. However, the treatments had insignificant effects on seasonal actual crop evapotranspiration (ETa), which ranged from 1.93 to 3.29 mm day-1. The interactions between SR and RWH were found to have significant impacts on water use. The Bagging algorithm revealed that the variability in ETa could be attributed to SR (42%), RWH (31%), and SF (26%), respectively. The implementation of rainwater harvesting practices resulted in a significant reduction in water usage, saving 86% of the green water used with a water footprint of 0.25 m3 kg-1, compared to 1.7 m3 kg-1 for no adoption of RWH conditions. The water use of rainfed Guinea grass was also found highly sensitive to dry spells. Further detailed studies using multiple-layer models are recommended to gain a better understanding of the non-linear interactions in semi-arid environments.

Project Number

not applicable

References

  • Alebele, Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H., ... & Cheng, T. (2020). Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target Gaussian regressor stacking. Remote Sensing, 12(16), 2564.
  • Allen, R., Pereira, L., Raes, D. & Smith, M. (1998). Crop evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage paper, 56. Rome, Italy.
  • Arriaga, F., Guzman, J. & Lowery, B. (2017). Conventional Agricultural Production Systems and Soil Functions. In: Mahdi et al (ed) Soil Health and Intensification of Agroecosys. Academic Press. https://doi.org/10.1016/B978-0-12-805317-1.00005-1
  • Belmans, C., Wesseling, J. & Feddes, R. (1983). Simulation of the water balance of a cropped soil: SWATRE. J. Hydrol. 63, 271–286
  • Benabderrahim, M. & Walid E. (2021). Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits. Agronomy 11(6) 1071. https://doi.org/10.3390/agronomy11061071
  • Boke-Olén, N., Lehsten, V., Abdi, A. M., Ardö, J., & Khatir, A. A. (2018). Estimating Grazing Potentials in Sudan Using Daily Carbon Allocation in Dynamic Vegetation Model. Rangeland Ecology & Management, 71(6), 792-797. https://doi.org/10.1016/j.rama.2018.06.006
  • Calera, A., Campos, I., Osann A, D'Urso, G. & Menenti, M. (2017). Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors (Basel). 2017 May 11;17(5):1104. doi: 10.3390/s17051104. PMID: 28492515; PMCID: PMC5470494
  • Catunda, K. L., Churchill, A. C., Power, S. A., Zhang, H., Fuller, K. J., & Moore, B. D. (2021). Plant structural and nutritional responses to drought differ among common pasture species. bioRxiv, 2021-10.
  • Chandregowda, M., Tjoelker, Power, S. & Pendall, E. (2022). Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Plant, Cell, & Environ. 45, (8), 2271-2291. https://doi.org/10.1111/pce.14334
  • Churchill, A. C., Zhang, H., Fuller, K. J., Amiji, B., Anderson, I. C., Barton, C. V., ... & Power, S. A. (2022). Pastures and climate extremes: impacts of cool season warming and drought on the productivity of key pasture species in a field experiment. Frontiers in plant science, 13, 836968.
  • Critchley, W., Siegert, K. & Chapman, C. (1991) Rainwater harvesting. A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. FAO, Rome, Italy.
  • de Jesus, F. L. F., Sanches, A. C., de Souza, D. P., Mendonça, F. C., Gomes, E. P., Santos, R. C., ... & da Silva, J. L. B. (2021). Seasonality of biomass production of irrigated Mombaça ‘Guinea grass’. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(3), 156-164.
  • de Oliveira, F.., César, Rodrigo, Lilla M., José, L. & Albuquerque, F. (2018). Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae 4, no. 4: 44. https://doi.org/10.3390/horticulturae4040044
  • de Oliveira, E. M. D., Martuscello, J. A., Jank, L., Cunha, D. D. N. F. V. D., & Santos, M. F. (2022). Evaluation of Megathyrsus maximus genotypes under water stress conditions. Acta Scientiarum. Animal Sciences, 44, e54975.
  • Deo, T. G., Ferreira, R. C., Lara, L. A., Moraes, A. C., Alves-Pereira, A., De Oliveira, F. A., ... & de Souza, A. P. (2020). High-resolution linkage map with allele dosage allows the identification of regions governing complex traits and apospory in guinea grass (Megathyrsus maximus). Frontiers in plant science, 11, 15.
  • di Virgilio, A., Lambertucci, S. A., & Morales, J. M. (2019). Sustainable grazing management in rangelands: Over a century searching for a silver bullet. Agriculture, Ecosystems & Environment, 283, 106561. https://doi.org/10.1016/j.agee.2019.05.020
  • Ding, R., Kang, S., Du, T., Hao, X., & Tong, L. (2015). Modeling crop water use in an irrigated maize cropland using a biophysical process-based model. Journal of Hydrology, 529, 276-286.
  • Hatfield, J. & Dold C. (2019). Water-Use Efficiency: Advances and Challenges in a Changing Climate. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.00103
  • IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla P, Skea J, Calvo Buendia E et al (ed). In press.
  • Isabel, J., Mazabel, J. & Jose, N.. (2021). Classification of Megathyrsus Maximus Accessions Grown in the Colombian Dry Tropical Forest by Nutritional Assessment During Contrasting Seasons. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.684747
  • Jayasinghe, P., Donaghy, D. J., Barber, D. G., Pembleton, K. G., & Ramilan, T. (2022). Suitability evaluation of three tropical pasture species (Mulato II, Gatton Panic, and Rhodes Grass) for cultivation under a subtropical climate of Australia. Agronomy, 12(9), 2032.
  • Lamede, F., Sanches, A.. et al.. (2021). Production and water-use efficiency of Megathyrsus maximus cv. Mombaça "Guinea grass" under nitrogen and boron doses. Semina: Ciênc. Agrár. Londrina, v. 42, n. 4, p. 2217-2232, jul./ago. 2021
  • Leng, G. & Hall, J. (2020) Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models. Environ Res Lett 15: 044027. https://doi.org/10.1088/1748-9326/ab7b24
  • Macedo, V. H. M., Lage Filho, N. M., Cunha, A. M. Q., Lopes, M. N., da Silva, R. G., Cutrim Junior, J. A. A., ... & do Rêgo, A. C. (2022). Agrometeorological and Agronomic Characterization of Megathyrsus Grasses Cultivated in Tropical Humid and Semi-Arid Conditions: A Multivariate Approach. Frontiers in Plant Science, 13, 809377.
  • Mganga, K. Z., Bosma, L., Amollo, K. O., Kioko, T., Kadenyi, N., Ndathi, A. J., ... & van Steenbergen, F. (2022). Combining rainwater harvesting and grass reseeding to revegetate denuded African semi-arid landscapes. Anthropocene Science, 1(1), 80-90.
  • Mohamed, H., Ahmed, S. & Mohamed, A. (2021). Modeling selected ecological interactions of Panicum maximum in a semi-dry environment enhanced with in situ rainwater harvesting systems. Model. Earth Syst. Environ. https://doi.org/10.1007/s40808-021-01282-6
  • Motta-Delgado, P. A., Ocaña Martínez, H. E. & Rojas-Vargas, E. P. (2019). Indicators associated to pastures sustainability: a review. Ciencia y Tecnología Agropecuaria, 20(2), 409-430 DOI: https://doi.org/10.21930/rcta.vol20_num2_art:1464
  • Mupangwa, W., Chipindu, L., Nyagumbo, I., Mkuhlani, S., & Sisito, G. (2020). Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa. SN Applied Sciences, 2(5), 952.
  • Pereira, L., & Alves, I.. (2005). Crop water requirements. Encyclopedia of Soils in the Environment, 322-334. https://doi.org/10.1016/B0-12-348530-4/00255-1
  • Pezzopane, J. R. M., Santos, P. M., Evangelista, S. R. M., Bosi, C., Cavalcante, A. C. R., Bettiol, G. M., ... & Pellegrino, G. Q. (2017). Panicum maximum cv. Tanzânia: climate trends and regional pasture production in Brazil. Grass and Forage Science, 72(1), 104-117.
  • Rahman, A. (2017) Recent Advances in Modelling and Implementation of Rainwater Harvesting Systems towards Sustainable Development. Water 9, no. 12: 959. https://doi.org/10.3390/w9120959
  • Ram, S. & Trivedi B. (2012). Response of Guinea grass (Panicum maximum Jacq) to nitrogen, farm yard, manure and harvest intervals. Forage Res., 38 (1): 49-52
  • Sanches, A. C., Souza, D. P. D., Jesus, F. L. F. D., Mendonça, F. C., & Gomes, E. P. (2019). Crop coefficients of tropical forage crops, single cropped and overseeded with black oat and ryegrass. Scientia Agricola, 76, 448-458.
  • Santos, P., Thornton, B. & Corsi, M. (2012). Dry mass production and persistence of Panicum maximum pastures depends on nitrogen supply. Animal Science and Pastures • Sci. Agric. (Piracicaba, Braz.) 69 (5). https://doi.org/10.1590/S0103-90162012000500002
  • Singh, R., Kumar S., Bala, A. & Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 213, 922-933. https://doi.org/10.1016/j.agwat.2018.12.002
  • Soti, P. & Thomas, V. (2021) Review of the invasive forage Grass, Guinea grass (Megathyrsus maximus): Ecology and potential impacts in arid and semi-arid regions. Weed Research, 00, 1– 7. https://doi.org/ 10.1111/wre.12512
  • Steduto, P., Hsiao, T., Fereres, E. & Raes, D. (2012) crop yield response to water. FAO Irrigation and Drainage Paper 66. Rome, Italy.
  • Strock, C. F., Rangarajan, H., Black, C. K., Schäfer, E. D., & Lynch, J. P. (2022). Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture. Annals of botany, 129(3), 315-330.
  • Yang, R., Liu, L., Liu, Q., Li, X., Yin, L., Hao, X., ... & Song, Q. (2022). Validation of leaf area index measurement system based on wireless sensor network. Scientific Reports, 12(1), 4668.
There are 39 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Research Articles
Authors

Shamseddin Ahmed 0000-0002-1898-2853

Hussein M. Ishag This is me

Adil M. Deifalla This is me

Project Number not applicable
Publication Date July 1, 2024
Submission Date April 8, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Ahmed, S., M. Ishag, H., & M. Deifalla, A. (2024). Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa. Turkish Journal of Range and Forage Science, 5(1), 67-79. https://doi.org/10.51801/turkjrfs.1466889
AMA Ahmed S, M. Ishag H, M. Deifalla A. Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa. Turk.J.R.For.Sci. July 2024;5(1):67-79. doi:10.51801/turkjrfs.1466889
Chicago Ahmed, Shamseddin, Hussein M. Ishag, and Adil M. Deifalla. “Water Use of Guinea Grass As Affected by Rainfed Local Conditions and Practices in Sub-Saharan Africa”. Turkish Journal of Range and Forage Science 5, no. 1 (July 2024): 67-79. https://doi.org/10.51801/turkjrfs.1466889.
EndNote Ahmed S, M. Ishag H, M. Deifalla A (July 1, 2024) Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa. Turkish Journal of Range and Forage Science 5 1 67–79.
IEEE S. Ahmed, H. M. Ishag, and A. M. Deifalla, “Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa”, Turk.J.R.For.Sci., vol. 5, no. 1, pp. 67–79, 2024, doi: 10.51801/turkjrfs.1466889.
ISNAD Ahmed, Shamseddin et al. “Water Use of Guinea Grass As Affected by Rainfed Local Conditions and Practices in Sub-Saharan Africa”. Turkish Journal of Range and Forage Science 5/1 (July 2024), 67-79. https://doi.org/10.51801/turkjrfs.1466889.
JAMA Ahmed S, M. Ishag H, M. Deifalla A. Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa. Turk.J.R.For.Sci. 2024;5:67–79.
MLA Ahmed, Shamseddin et al. “Water Use of Guinea Grass As Affected by Rainfed Local Conditions and Practices in Sub-Saharan Africa”. Turkish Journal of Range and Forage Science, vol. 5, no. 1, 2024, pp. 67-79, doi:10.51801/turkjrfs.1466889.
Vancouver Ahmed S, M. Ishag H, M. Deifalla A. Water use of Guinea grass as affected by rainfed local conditions and practices in Sub-Saharan Africa. Turk.J.R.For.Sci. 2024;5(1):67-79.

     TR_Dizin_logo.png?version=1&modificationDate=1614345672000&api=v2  asos-index.png          logo.png    Crossref_Logo_Stacked_RGB_SMALL.png 1?ui=2&ik=a4058937f1&attid=0.3&permmsgid=msg-f:1749487628794806097&th=18476dbaad413f51&view=fimg&fur=ip&sz=s0-l75-ft&attbid=ANGjdJ9QGll0LXXhrpfkwxITnNQPMSCkjzPYtGlKAQeCi78zqusMPzJmW9Os0HX2VeTA31eRfyXCwOmU97TIQBEjf3rU8o_BbruviQKEDDHIC8oINFfNbOJLDrJPxfs&disp=emb




Turkish Journal of Range and Forage Science is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.