Research Article
BibTex RIS Cite

Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması

Year 2019, Volume: 1 Issue: 1, 1 - 7, 15.12.2019

Abstract

Bu çalışmada yapay
açıklıklı radar görüntülerinin oluşturulmasında kullanılan yöntemlerden,
Uyumlanmış Filtre, Geriye-İzdüşüm ve w-k algoritmalarının görüntü oluşturmadaki
performansları karşılaştırılmıştır. Kıyaslamada çözünürlük,  işlem süresi, sinyal-gürültü oranı,
sinyal-karışıklık oranı ve tümleşik yan lop oranı gibi parametreler dikkate
alınmıştır. Algoritmalar hem benzetim verilerine hem de 14- 18 GHz bandında
ölçülen gerçek yer-bazlı yapay açıklıklı radar verilerine uygulanmıştır. Elde
edilen sonuçlar, hangi tekniğin amaçlanan hedef için daha yararlı olduğu
konusunda karşılaştırmalı veriler sağlamaktadır.

Supporting Institution

TUBITAK

Project Number

MAM-5075519

Thanks

Yazar YB-YAR ölçümüne olanak sunan TUBITAK Marmara Araştırma Merkezi Malzeme Enstitüsü İleri Teknoloji Laboratuvarına ve deneylerde yardımcı olan Prof. Dr. Caner ÖZDEMİR ile Dr. Şevket Demirci ’ye teşekkürlerini sunar

References

  • A. Matthew T. (2008). A Detailed Look at the Omega-K Algorithm for Processing Synthetic Aperture Radar Data. A thesis Master of Science, Dep. of Elec. and Comp. Eng. Brigham Young University.
  • Bennett, J. R. and Cumming I.G. (1979). A digital processor for the production of Seasat synthetic aperture radar imagery. Proc. SURGE Workshop, Frascati, ESA-SP-154.
  • Cumming, I., Wong, F. and Raney, K. (1992). A SAR processing algorithm with no interpolation. Proc. IGARSS ’92, Houston, 376-379.
  • Jin, M. Y. and C. Wu, “A SAR correlation algorithm which accommodates large range migration,” IEEE Trans. Geosci. Remote Sensing, vol. GE-22, pp. 592-597, 1984.
  • Leva D. , Nico G., Tarchi D., Fortuny-Guasch J., and Sieber A. J. (2003). Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans. Geosci. Remote Sensing, (41), 745–752.
  • Nguyen M. P. (2011). Omega-K Algorithm – A Generalization for Highly Squinted Spotlight SAR Imaging with Dechirp-on-Receive. Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea, 137-140.
  • Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F.H. (1994). Precision SAR Processing Using ChirpScaling. IEEE Trans. Geosci. Remote Sensing, vol. 32(4), 786-799.
  • Basu, S. and Bresler, Y. (2000). O(N2 log2N) filtered backprojection reconstruction algorithm for tomography. IEEE Transactions on Image Processing, 9(10), 1760-1773.
  • Smith, A. M. (1991). A new approach to range-Doppler SAR processing. Int. J. Remote Sensing, vol. 12, 235-251.
  • Yigit E., Demirci S., Yilmaz B., Ozdemir C. (2013b). Short range Ground based SAR Imaging Experiments Application of Back projection Algorithm. PIERS Proceedings, 872-875.
  • Yigit E., Unal A., Demirci S., Vertiy A., Ozdemir C. (2011). An adapted matched filter algorithm for millimeter wave ground based squint mode SAR applications. IEEE, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.
  • Zhou Z. S., Boerner V., Sato M. (2004). Development of a Ground-Based Polarimetric Broadband SAR System for Non- Invasive Ground-truth Validation in Vegetation Monitoring. IEEE Trans. Geoscience and Remote Sensing. 42(9), 1803-1810.
  • Barton D. K. (1988). Modern Radar System Analysis. Artech House, 1988
  • Shu X., Munson, D. C., Basu, S. and Bresler, Y. (2000). An N2 log2N back-projection algorithm for SAR image formation. The Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, vol. 1, 3-7.
  • Yigit E., Demirci Ş., Özdemir C., Tekbaş M. (2013a). Short range ground based synthetic aperture radar imaging performance comparison between frequency wavenumber migration and back projection algorithms. Journal of Applied Remote Sensing, 7(1), 1-15.
  • Yigit E., Demirci Ş., Ünal A., Özdemir C., Vertiy A. (2012). Millimeter wave Ground based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection Experimental Studies at Short Ranges. Journal of Infrared, Millimeter, and Terahertz Waves, 33(12), 1227-1238.
  • Fortuny, J. and Lopez-Sanchez, J. M. (2001). Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries. IEEE Trans. on Antennas and Propagation, vol. 49, no. 10, pp. 1434-1444.

Comparison of the synthetic aperture radar imaging algorithms

Year 2019, Volume: 1 Issue: 1, 1 - 7, 15.12.2019

Abstract

In this study, the performances of the matched filter, back-projection and w-k algorithms used in the reconstruction of the synthetic aperture radar images are compared. In the comparison, the parameters such as resolution, processing time, signal-to-noise ratio, signal-to-clutter ratio and integrated side lobe ratio are considered. The reconstruction algorithms are applied to both simulation data and real ground-based synthetic aperture radar data measured in 14-18 GHz band. The obtained results provide comparative data on which technique is more useful for the desired purpose.

Project Number

MAM-5075519

References

  • A. Matthew T. (2008). A Detailed Look at the Omega-K Algorithm for Processing Synthetic Aperture Radar Data. A thesis Master of Science, Dep. of Elec. and Comp. Eng. Brigham Young University.
  • Bennett, J. R. and Cumming I.G. (1979). A digital processor for the production of Seasat synthetic aperture radar imagery. Proc. SURGE Workshop, Frascati, ESA-SP-154.
  • Cumming, I., Wong, F. and Raney, K. (1992). A SAR processing algorithm with no interpolation. Proc. IGARSS ’92, Houston, 376-379.
  • Jin, M. Y. and C. Wu, “A SAR correlation algorithm which accommodates large range migration,” IEEE Trans. Geosci. Remote Sensing, vol. GE-22, pp. 592-597, 1984.
  • Leva D. , Nico G., Tarchi D., Fortuny-Guasch J., and Sieber A. J. (2003). Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans. Geosci. Remote Sensing, (41), 745–752.
  • Nguyen M. P. (2011). Omega-K Algorithm – A Generalization for Highly Squinted Spotlight SAR Imaging with Dechirp-on-Receive. Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea, 137-140.
  • Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F.H. (1994). Precision SAR Processing Using ChirpScaling. IEEE Trans. Geosci. Remote Sensing, vol. 32(4), 786-799.
  • Basu, S. and Bresler, Y. (2000). O(N2 log2N) filtered backprojection reconstruction algorithm for tomography. IEEE Transactions on Image Processing, 9(10), 1760-1773.
  • Smith, A. M. (1991). A new approach to range-Doppler SAR processing. Int. J. Remote Sensing, vol. 12, 235-251.
  • Yigit E., Demirci S., Yilmaz B., Ozdemir C. (2013b). Short range Ground based SAR Imaging Experiments Application of Back projection Algorithm. PIERS Proceedings, 872-875.
  • Yigit E., Unal A., Demirci S., Vertiy A., Ozdemir C. (2011). An adapted matched filter algorithm for millimeter wave ground based squint mode SAR applications. IEEE, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.
  • Zhou Z. S., Boerner V., Sato M. (2004). Development of a Ground-Based Polarimetric Broadband SAR System for Non- Invasive Ground-truth Validation in Vegetation Monitoring. IEEE Trans. Geoscience and Remote Sensing. 42(9), 1803-1810.
  • Barton D. K. (1988). Modern Radar System Analysis. Artech House, 1988
  • Shu X., Munson, D. C., Basu, S. and Bresler, Y. (2000). An N2 log2N back-projection algorithm for SAR image formation. The Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, vol. 1, 3-7.
  • Yigit E., Demirci Ş., Özdemir C., Tekbaş M. (2013a). Short range ground based synthetic aperture radar imaging performance comparison between frequency wavenumber migration and back projection algorithms. Journal of Applied Remote Sensing, 7(1), 1-15.
  • Yigit E., Demirci Ş., Ünal A., Özdemir C., Vertiy A. (2012). Millimeter wave Ground based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection Experimental Studies at Short Ranges. Journal of Infrared, Millimeter, and Terahertz Waves, 33(12), 1227-1238.
  • Fortuny, J. and Lopez-Sanchez, J. M. (2001). Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries. IEEE Trans. on Antennas and Propagation, vol. 49, no. 10, pp. 1434-1444.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Enes Yiğit 0000-0002-0960-5335

Project Number MAM-5075519
Publication Date December 15, 2019
Acceptance Date December 7, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Yiğit, E. (2019). Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması. Türkiye Uzaktan Algılama Dergisi, 1(1), 1-7.
AMA Yiğit E. Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması. TUZAL. December 2019;1(1):1-7.
Chicago Yiğit, Enes. “Yapay açıklıklı Radar görüntüleme algoritmalarının karşılaştırılması”. Türkiye Uzaktan Algılama Dergisi 1, no. 1 (December 2019): 1-7.
EndNote Yiğit E (December 1, 2019) Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması. Türkiye Uzaktan Algılama Dergisi 1 1 1–7.
IEEE E. Yiğit, “Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması”, TUZAL, vol. 1, no. 1, pp. 1–7, 2019.
ISNAD Yiğit, Enes. “Yapay açıklıklı Radar görüntüleme algoritmalarının karşılaştırılması”. Türkiye Uzaktan Algılama Dergisi 1/1 (December 2019), 1-7.
JAMA Yiğit E. Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması. TUZAL. 2019;1:1–7.
MLA Yiğit, Enes. “Yapay açıklıklı Radar görüntüleme algoritmalarının karşılaştırılması”. Türkiye Uzaktan Algılama Dergisi, vol. 1, no. 1, 2019, pp. 1-7.
Vancouver Yiğit E. Yapay açıklıklı radar görüntüleme algoritmalarının karşılaştırılması. TUZAL. 2019;1(1):1-7.

Flag Counter