Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 1, 69 - 90, 30.06.2025
https://doi.org/10.51489/tuzal.1663695

Abstract

References

  • Akyürek, Ö. (2020). Determination of Land Surface Temperature with thermal remote sensing images: A case study Kocaeli province. Journal of Natural Hazards and Environment, 6(2), 377-390. https://doi.org/10.21324/dacd.667594
  • Alademomi, A. S., Okolie, C. J., Daramola, O. E., Akinnusi, S. A., Adediran, E., Olanrewaju, H. O., Alabi, A. O., Salami, T. J., & Odumosu, J. (2022). The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Applied Geomatics, 14(2), 299-314. https://doi.org/10.1007/s12518-022-00434-2
  • Aquino, D. D. N., Rocha Neto, O. C. D., Moreira, M. A., Teixeira, A. D. S., & Andrade, E. M. D. (2018). Use of remote sensing to identify areas at risk of degradation in the semi-arid region. Revista Ciência Agronômica, 49, pp. 420–429. https://doi.org/10.5935/1806-6690.20180047
  • Bauer, M. E., Heinert, N. J., Doyle, J. K., & Yuan, F. (2004). Impervious surface mapping and change monitoring using Landsat remote sensing. Proceedings Book of ASPRS Annual Conference Proceedings: American Society for Photogrammetry and Remote Sensing Bethesda, MD, USA.
  • Blair, R. C., & Higgins, J. J. (1985). Comparison of the power of the paired samples t test to that of Wilcoxon's signed-ranks test under various population shapes. Psychological Bulletin, 97(1), 119. https://doi.org/10.1037/0033-2909.97.1.119
  • Chen, L., Li, M., Huang, F., & Xu, S. (2013, December 16-18). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image [Paper presentation]. 6th international congress on image and signal processing (CISP), Hangzhou, China. https://doi.org/10.1109/CISP. 2013.6745282
  • Chen, Y., Wang, J., & Li, X. (2002). A study on urban thermal field in summer based on satellite remote sensing. Remote Sensing for Land and Resources, 4(1), 55–59.
  • Fıçıcı, M. (2024). Analysis of urban sprawl along the coastline of Trabzon province between 1980-2030 using GHSL (global human settlement layer) and GEE (google earth engine). Journal of Anatolian Geography, 2(2), 97–107.
  • Genceli, M. (2007). Kolmogorov-smirnov, lilliefors and shaphiro-wilk tests for normality. Sigma Journal of Engineering and Natural Sciences, 25(4), 306–328.
  • Gorelick, N. (2013, April). Google earth engine. Proceedings Book of EGU General Assembly Conference. Vienna, Austria.
  • Guha, S., Govil, H., Gill, N., & Dey, A. (2021). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quaternary International, 575, 249-258. https://doi.org/10.1016/j.quaint.2020.06.041
  • Gümüş, M. G. (2024). Forecasting future scenarios of coastline changes in Türkiye's Seyhan Basin: a comparative analysis of statistical methods and Kalman Filtering (2033–2043). Earth Science Informatics, 17, 5207–5232. https://doi.org/10.1007/s12145-024-01445-w
  • Gümüş, M. G., & Durduran, S. S. (2023). Satellite-based investigation of drought effect on vegetation health index: Beyşehir-Kaşakli Sub-Basin, Turkey. Bulletin of Geophysics & Oceanography, 64(1), 89-112. https://doi.org/10.4430/bgo00403
  • Gümüş, M. G., & Durduran, S. S. (2024). Determination of Potential Geothermal Areas in Konya Seydişehir District Using GIS-based Multi-Criteria Decision Analysis. Turkish Journal of Remote Sensing, 6(1), 26–34. https://doi.org/10.51489/tuzal.1400620
  • Hatfield, J. L., Kanemasu, E. T., Asrar, G., Jackson, R. D., Pinter Jr, P. J., Reginato, R. J., & Idso, S. B. (1985). Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 6(1), 167–175. https://doi.org/10.1080/01431168508948432
  • İnan, M. (2009). The spectral relationships between remote sensing data and dendrometric parameters of forest stand. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 22(3), 21–33.
  • Jamei, Y., Seyedmahmoudian, M., Jamei, E., Horan, B., Mekhilef, S., & Stojcevski, A. (2022). Investigating the relationship between land use/land cover change and land surface temperature using Google Earth engine; case study: Melbourne, Australia. Sustainability, 14(22), 14868. https://doi.org/10.3390/su142214868
  • Kale, M. M., & Erişmiş, M. (2024). Analysis of the spatial changes in lake Eğirdir using remote sensing and geographic information systems. International Journal of Geography and Geography Education, (52), 122–140. https://doi.org/10.32003/igge.1380588
  • Keerthi Naidu, B. N., & Chundeli, F. A. (2023). Assessing LULC changes and LST through NDVI and NDBI spatial indicators: A case of Bengaluru, India. GeoJournal, 88(4), 4335-4350. https://doi.org/10.1007/s10708-023-10862-1
  • Kesikoğlu, M. H., Ozkan, C., & Kaynak, T. (2021). The impact of impervious surface, vegetation, and soil areas on land surface temperatures in a semi-arid region using Landsat satellite images enriched with Ndaisi method data. Environmental Monitoring and Assessment, 193, 143. https://doi.org/10.1007/s10661-021-08916-3
  • Kılıç, A. F. (2022). The effect of categories and distribution of variables on correlation coefficients. Ege Journal of Education, 23(1), 50–80. https://doi.org/10.12984/egeefd.890104
  • Kızılelma, Y., Karabulut, M., Gürbüz, M., Topuz, M., & Ceylan, E. (2013). Niğde şehri ve yakın çevresinin zamansal değişiminin uzaktan algılama ve CBS kullanılarak incelenmesi. Zeitschrift für die Welt der Türken-Journal of World of Turks, 5(3), 21-34.
  • KTB. (2014). Geographical characteristics of Niğde. Retrieved January 11, 2025, from https://nigde.ktb.gov.tr/Eklenti/33622%2Cnigde nin-cografi-oze llikleri.pdf?0=
  • Lambin, E. F., & Ehrlich, D. (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17(3), 463–487. https://doi.org/10.1080/01431169608949021
  • Liu, J., Li, Y., Zhang, Y., & Liu, X. (2023). Large-scale impervious surface area mapping and pattern evolution of the Yellow river delta using Sentinel-1/2 on the GEE. Remote Sensing, 15(1), 136. https://doi.org/10.3390/rs15010136
  • Manfei, X., Fralick, D., Zheng, J. Z., Wang, B., Xin, M. T. U., & Changyong, F. (2017). The differences and similarities between two-sample t-test and paired t-test. Shanghai Archives of Psychiatry, 29(3), 184. https://doi.org/10.11919/j.issn.1002-0829.217070
  • Okoye, K., & Hosseini, S. (2024). T-test statistics in R: Independent samples, paired sample, and one sample T-tests. In: R programming: statistical data analysis in research. Springer. https://doi.org/10.1007/978-981-97-3385-9_8
  • Parekh, J. R., Poortinga, A., Bhandari, B., Mayer, T., Saah, D., & Chishtie, F. (2021). Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sensing, 13(16), 3166. https://doi.org/10.3390/rs13163166
  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
  • Sarkar Chaudhuri, A., Singh, P., & Rai, S. C. (2017). Assessment of impervious surface growth in urban environment through remote sensing estimates. Environmental Earth Sciences, 76, 1–14. https://doi.org/10.1007/s12665-017-6877-1
  • Shrestha, B., Ahmad, S., & Stephen, H. (2021). Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale. Environmental Monitoring and Assessment, 193(9), 556. https://doi.org/10.1007/s10661-021-09321-6
  • Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21, 353–366. https://doi.org/10.1080/014311600210876
  • Tonyaloğlu, E. E. (2019). The evaluation of the impact of urbanisation on urban thermal environment in the case of Aydin. Turkish Journal of Landscape Research, 2(1), 1–13.
  • TÜİK. (2025). Provincial Populations by Year. Retrieved January 11, 2025, from https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-53783
  • UNPD. (2015). World Urbanization Prospects: The 2014 Revision. Retrieved December 22, 2024, from https://www.un.org/development/desa/pd/
  • Ünver, A., & Başkaya, Z. (2024). Building density change analysis with NDVI, NDBI and UI Analyzes (1999-2022): Yıldırım District (Bursa) example. Journal of Geography, (49), pp. 65–81. https://doi.org/10.26650/JGEOG2024-1441862
  • USGS. (2013). Landsat missions (Landsat 8). Retrieved December 02, 2024, from https://www.usgs.gov/landsat-missions/landsat-8
  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003
  • Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), pp.256-264. https://doi.org/10.1016/j.jag.2009.03.001

Assessment of the impact of impervious surface increase on urban heat island and vegetation by remote sensing and statistical analysis: the case of Türkiye/Niğde city center (2013-2024)

Year 2025, Volume: 7 Issue: 1, 69 - 90, 30.06.2025
https://doi.org/10.51489/tuzal.1663695

Abstract

The expansion of impervious surfaces, reduction of vegetation cover, and heat-retaining properties of artificial materials intensify the Urban Heat Island (UHI) effect, leading to higher surface temperatures in urban areas compared to rural surroundings. This phenomenon increases energy demand, interacts with climate change, and negatively impacts public health. This study investigates the spatial and temporal changes in vegetation, impervious surface density, and land surface temperature (LST) in Niğde, Türkiye, between 2013 and 2024. NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST were derived from Landsat 8 OLI/TIRS satellite imagery and analyzed using Google Earth Engine (GEE) and ArcGIS 10.8. Index values were extracted from 500 randomly distributed points. Data normality was assessed using Kolmogorov-Smirnov and Shapiro-Wilk tests. Paired sample t-tests and Wilcoxon signed-rank tests were used to evaluate temporal differences, while Pearson, Spearman's rho, and Kendall's tau-b correlation coefficients were used to determine the level of relationship between variables. Results show no significant change in NDVI (p > 0.05), but statistically significant increases in both NDBI and LST (p < 0.05). A strong negative correlation was observed between NDVI and NDBI (r = -0.91), and a positive correlation between NDBI and LST (r = 0.39). Between 2013 and 2024, impervious surfaces expanded by 59.63% (from 14.02 km² to 22.38 km²), while dense vegetation areas declined by 50%. These findings confirm that urbanization has led to vegetation loss and increased surface temperatures. The study offers valuable insights into the UHI effect using remote sensing and statistical analysis and contributes to sustainable urban planning and climate adaptation strategies.

References

  • Akyürek, Ö. (2020). Determination of Land Surface Temperature with thermal remote sensing images: A case study Kocaeli province. Journal of Natural Hazards and Environment, 6(2), 377-390. https://doi.org/10.21324/dacd.667594
  • Alademomi, A. S., Okolie, C. J., Daramola, O. E., Akinnusi, S. A., Adediran, E., Olanrewaju, H. O., Alabi, A. O., Salami, T. J., & Odumosu, J. (2022). The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Applied Geomatics, 14(2), 299-314. https://doi.org/10.1007/s12518-022-00434-2
  • Aquino, D. D. N., Rocha Neto, O. C. D., Moreira, M. A., Teixeira, A. D. S., & Andrade, E. M. D. (2018). Use of remote sensing to identify areas at risk of degradation in the semi-arid region. Revista Ciência Agronômica, 49, pp. 420–429. https://doi.org/10.5935/1806-6690.20180047
  • Bauer, M. E., Heinert, N. J., Doyle, J. K., & Yuan, F. (2004). Impervious surface mapping and change monitoring using Landsat remote sensing. Proceedings Book of ASPRS Annual Conference Proceedings: American Society for Photogrammetry and Remote Sensing Bethesda, MD, USA.
  • Blair, R. C., & Higgins, J. J. (1985). Comparison of the power of the paired samples t test to that of Wilcoxon's signed-ranks test under various population shapes. Psychological Bulletin, 97(1), 119. https://doi.org/10.1037/0033-2909.97.1.119
  • Chen, L., Li, M., Huang, F., & Xu, S. (2013, December 16-18). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image [Paper presentation]. 6th international congress on image and signal processing (CISP), Hangzhou, China. https://doi.org/10.1109/CISP. 2013.6745282
  • Chen, Y., Wang, J., & Li, X. (2002). A study on urban thermal field in summer based on satellite remote sensing. Remote Sensing for Land and Resources, 4(1), 55–59.
  • Fıçıcı, M. (2024). Analysis of urban sprawl along the coastline of Trabzon province between 1980-2030 using GHSL (global human settlement layer) and GEE (google earth engine). Journal of Anatolian Geography, 2(2), 97–107.
  • Genceli, M. (2007). Kolmogorov-smirnov, lilliefors and shaphiro-wilk tests for normality. Sigma Journal of Engineering and Natural Sciences, 25(4), 306–328.
  • Gorelick, N. (2013, April). Google earth engine. Proceedings Book of EGU General Assembly Conference. Vienna, Austria.
  • Guha, S., Govil, H., Gill, N., & Dey, A. (2021). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quaternary International, 575, 249-258. https://doi.org/10.1016/j.quaint.2020.06.041
  • Gümüş, M. G. (2024). Forecasting future scenarios of coastline changes in Türkiye's Seyhan Basin: a comparative analysis of statistical methods and Kalman Filtering (2033–2043). Earth Science Informatics, 17, 5207–5232. https://doi.org/10.1007/s12145-024-01445-w
  • Gümüş, M. G., & Durduran, S. S. (2023). Satellite-based investigation of drought effect on vegetation health index: Beyşehir-Kaşakli Sub-Basin, Turkey. Bulletin of Geophysics & Oceanography, 64(1), 89-112. https://doi.org/10.4430/bgo00403
  • Gümüş, M. G., & Durduran, S. S. (2024). Determination of Potential Geothermal Areas in Konya Seydişehir District Using GIS-based Multi-Criteria Decision Analysis. Turkish Journal of Remote Sensing, 6(1), 26–34. https://doi.org/10.51489/tuzal.1400620
  • Hatfield, J. L., Kanemasu, E. T., Asrar, G., Jackson, R. D., Pinter Jr, P. J., Reginato, R. J., & Idso, S. B. (1985). Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 6(1), 167–175. https://doi.org/10.1080/01431168508948432
  • İnan, M. (2009). The spectral relationships between remote sensing data and dendrometric parameters of forest stand. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 22(3), 21–33.
  • Jamei, Y., Seyedmahmoudian, M., Jamei, E., Horan, B., Mekhilef, S., & Stojcevski, A. (2022). Investigating the relationship between land use/land cover change and land surface temperature using Google Earth engine; case study: Melbourne, Australia. Sustainability, 14(22), 14868. https://doi.org/10.3390/su142214868
  • Kale, M. M., & Erişmiş, M. (2024). Analysis of the spatial changes in lake Eğirdir using remote sensing and geographic information systems. International Journal of Geography and Geography Education, (52), 122–140. https://doi.org/10.32003/igge.1380588
  • Keerthi Naidu, B. N., & Chundeli, F. A. (2023). Assessing LULC changes and LST through NDVI and NDBI spatial indicators: A case of Bengaluru, India. GeoJournal, 88(4), 4335-4350. https://doi.org/10.1007/s10708-023-10862-1
  • Kesikoğlu, M. H., Ozkan, C., & Kaynak, T. (2021). The impact of impervious surface, vegetation, and soil areas on land surface temperatures in a semi-arid region using Landsat satellite images enriched with Ndaisi method data. Environmental Monitoring and Assessment, 193, 143. https://doi.org/10.1007/s10661-021-08916-3
  • Kılıç, A. F. (2022). The effect of categories and distribution of variables on correlation coefficients. Ege Journal of Education, 23(1), 50–80. https://doi.org/10.12984/egeefd.890104
  • Kızılelma, Y., Karabulut, M., Gürbüz, M., Topuz, M., & Ceylan, E. (2013). Niğde şehri ve yakın çevresinin zamansal değişiminin uzaktan algılama ve CBS kullanılarak incelenmesi. Zeitschrift für die Welt der Türken-Journal of World of Turks, 5(3), 21-34.
  • KTB. (2014). Geographical characteristics of Niğde. Retrieved January 11, 2025, from https://nigde.ktb.gov.tr/Eklenti/33622%2Cnigde nin-cografi-oze llikleri.pdf?0=
  • Lambin, E. F., & Ehrlich, D. (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17(3), 463–487. https://doi.org/10.1080/01431169608949021
  • Liu, J., Li, Y., Zhang, Y., & Liu, X. (2023). Large-scale impervious surface area mapping and pattern evolution of the Yellow river delta using Sentinel-1/2 on the GEE. Remote Sensing, 15(1), 136. https://doi.org/10.3390/rs15010136
  • Manfei, X., Fralick, D., Zheng, J. Z., Wang, B., Xin, M. T. U., & Changyong, F. (2017). The differences and similarities between two-sample t-test and paired t-test. Shanghai Archives of Psychiatry, 29(3), 184. https://doi.org/10.11919/j.issn.1002-0829.217070
  • Okoye, K., & Hosseini, S. (2024). T-test statistics in R: Independent samples, paired sample, and one sample T-tests. In: R programming: statistical data analysis in research. Springer. https://doi.org/10.1007/978-981-97-3385-9_8
  • Parekh, J. R., Poortinga, A., Bhandari, B., Mayer, T., Saah, D., & Chishtie, F. (2021). Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sensing, 13(16), 3166. https://doi.org/10.3390/rs13163166
  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
  • Sarkar Chaudhuri, A., Singh, P., & Rai, S. C. (2017). Assessment of impervious surface growth in urban environment through remote sensing estimates. Environmental Earth Sciences, 76, 1–14. https://doi.org/10.1007/s12665-017-6877-1
  • Shrestha, B., Ahmad, S., & Stephen, H. (2021). Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale. Environmental Monitoring and Assessment, 193(9), 556. https://doi.org/10.1007/s10661-021-09321-6
  • Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21, 353–366. https://doi.org/10.1080/014311600210876
  • Tonyaloğlu, E. E. (2019). The evaluation of the impact of urbanisation on urban thermal environment in the case of Aydin. Turkish Journal of Landscape Research, 2(1), 1–13.
  • TÜİK. (2025). Provincial Populations by Year. Retrieved January 11, 2025, from https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-53783
  • UNPD. (2015). World Urbanization Prospects: The 2014 Revision. Retrieved December 22, 2024, from https://www.un.org/development/desa/pd/
  • Ünver, A., & Başkaya, Z. (2024). Building density change analysis with NDVI, NDBI and UI Analyzes (1999-2022): Yıldırım District (Bursa) example. Journal of Geography, (49), pp. 65–81. https://doi.org/10.26650/JGEOG2024-1441862
  • USGS. (2013). Landsat missions (Landsat 8). Retrieved December 02, 2024, from https://www.usgs.gov/landsat-missions/landsat-8
  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003
  • Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), pp.256-264. https://doi.org/10.1016/j.jag.2009.03.001
There are 41 citations in total.

Details

Primary Language English
Subjects Remote Sensing
Journal Section Research Articles
Authors

Münevver Gizem Gümüş 0000-0003-4606-2277

Kutalmış Gümüş 0000-0003-3114-8449

Publication Date June 30, 2025
Submission Date March 23, 2025
Acceptance Date April 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

IEEE M. G. Gümüş and K. Gümüş, “Assessment of the impact of impervious surface increase on urban heat island and vegetation by remote sensing and statistical analysis: the case of Türkiye/Niğde city center (2013-2024)”, TJRS, vol. 7, no. 1, pp. 69–90, 2025, doi: 10.51489/tuzal.1663695.

 SCImago Journal & Country Rank             Flag Counter