BibTex RIS Cite
Year 2019, Volume: 9 Issue: 4, 792 - 799, 01.12.2019

Abstract

References

  • Abdeljawad, T (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics 279, pp. 57–66.
  • Anderson, D. R. (2016), Taylor’s formula and integral inequalities for conformable fractional deriva- tives, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer, New York.
  • Hammad M. A. and Khalil R. (2014), Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), pp. 177-183.
  • Hammad M. A. and Khalil R. (2014), Abel’s formula and wronskian for conformable fractional differ- ential equations, International Journal of Differential Equations and Applications 13(3), pp. 177-183.
  • Iyiola O.S.and Nwaeze E.R.(2016), Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2(2), pp.115-122.
  • Khalil R., Al horani M., Yousef A. and Sababheh M.(2014), A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264, pp. 65-70.
  • Katugampola U.N. (2011), New approach to a generalized fractional integral, Appl. Math. Comput., 218(3), pp. 860–865.
  • Katugampola U.N. (2014), New approach to generalized fractional derivatives, B. Math. Anal. App., 6(4), pp. 1–15.
  • Kilbas A. A., Srivastava H.M. and Trujillo J.J. (2016), Theory and Applications of Fractional Differ- ential Equations, Elsevier B.V., Amsterdam, Netherlands.
  • Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach.

ON GENERALIZED THE CONFORMABLE FRACTIONAL CALCULUS

Year 2019, Volume: 9 Issue: 4, 792 - 799, 01.12.2019

Abstract

In this paper, we generalize the conformable fractional derivative and integral and obtain several results such as the product rule, quotient rule, chain rule.

References

  • Abdeljawad, T (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics 279, pp. 57–66.
  • Anderson, D. R. (2016), Taylor’s formula and integral inequalities for conformable fractional deriva- tives, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer, New York.
  • Hammad M. A. and Khalil R. (2014), Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), pp. 177-183.
  • Hammad M. A. and Khalil R. (2014), Abel’s formula and wronskian for conformable fractional differ- ential equations, International Journal of Differential Equations and Applications 13(3), pp. 177-183.
  • Iyiola O.S.and Nwaeze E.R.(2016), Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2(2), pp.115-122.
  • Khalil R., Al horani M., Yousef A. and Sababheh M.(2014), A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264, pp. 65-70.
  • Katugampola U.N. (2011), New approach to a generalized fractional integral, Appl. Math. Comput., 218(3), pp. 860–865.
  • Katugampola U.N. (2014), New approach to generalized fractional derivatives, B. Math. Anal. App., 6(4), pp. 1–15.
  • Kilbas A. A., Srivastava H.M. and Trujillo J.J. (2016), Theory and Applications of Fractional Differ- ential Equations, Elsevier B.V., Amsterdam, Netherlands.
  • Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. Z. Sarıkaya This is me

H. Budak This is me

H. Usta This is me

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite