BibTex RIS Cite
Year 2019, Volume: 9 Issue: 4, 949 - 956, 01.12.2019

Abstract

References

  • Biler, P. and Witkowski, A., (1990), Problems in Mathematical Analysis, Marcel Dekker, New York.
  • Borovi´canin, B., Das, K. C., Furtula, B. and Gutman, I., (2017), Bounds for Zagreb indices, MATCH
  • Commun. Math. Comput. Chem., 78, pp.17-100. B¨uy¨ukk¨ose, S., Mutlu, N. and Kaya Gok, G., (2018), A note on the spectral radius of weighted signless laplacian matrix, Advances in Linear Algebra Matrix Theory, 8, pp.53-63.
  • Das, K. C. and Mojallal, S.A., (2014), On laplacian energy of graphs. MATCH Commun. Math. Comput. Chem., 325, pp.52-64.
  • Das, K. C., Elumalai, S. and Gutman, I., (2017), On ABC index of graphs, MATCH Commun. Math. Comput. Chem., 78, pp.459-468.
  • Fan, K., (1949), On a theorem Weyl concerning eigenvalues of linear transformation, I. Proc. Natl. Acad. Sci. USA, 35,pp.652-655.
  • Gutman, I., Kiani, D. and Mirzakhah, M., (2009), On incidence energy of graphs, MATCH Commun. Math. Comput. Chem., 62, pp.573-580.
  • Gutman, I., Li, X. and Zhang, J., (2009), Graph Energy, in: Dehmer, M.,Emmert, F.- Streib(Eds.)
  • Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, pp.145-174. Joojandeh, M. R., Kiani, D. and Mirzakhah, M., (2009), Incidence energy of a graph, MATCH
  • Commun. Math. Comput. Chem., 62, pp.561-572. Milovanov´c, I.Z., Milovanov´c, E.I. and Zaki´c, A., (2014), A short note on graph energy, MATCH
  • Commun. Math. Comput. Chem., 72, pp.179-182. O. Mohammad R., (2016), Energy and seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75, pp.291-303.
  • Ramane, H.S. and Jummannaver, R.B., (2017), Seidel laplacian energy of graphs, International Jour- nal of Applied Graph Theory, 1,2, pp.74-82.

SOME BOUNDS ON THE SEIDEL ENERGY OF GRAPHS

Year 2019, Volume: 9 Issue: 4, 949 - 956, 01.12.2019

Abstract

This paper includes new bounds concepting the Seidel incidence energy. In the sequel, improved bounds about the Seidel Laplacian energy concerned with the edges and the vertices are established.

References

  • Biler, P. and Witkowski, A., (1990), Problems in Mathematical Analysis, Marcel Dekker, New York.
  • Borovi´canin, B., Das, K. C., Furtula, B. and Gutman, I., (2017), Bounds for Zagreb indices, MATCH
  • Commun. Math. Comput. Chem., 78, pp.17-100. B¨uy¨ukk¨ose, S., Mutlu, N. and Kaya Gok, G., (2018), A note on the spectral radius of weighted signless laplacian matrix, Advances in Linear Algebra Matrix Theory, 8, pp.53-63.
  • Das, K. C. and Mojallal, S.A., (2014), On laplacian energy of graphs. MATCH Commun. Math. Comput. Chem., 325, pp.52-64.
  • Das, K. C., Elumalai, S. and Gutman, I., (2017), On ABC index of graphs, MATCH Commun. Math. Comput. Chem., 78, pp.459-468.
  • Fan, K., (1949), On a theorem Weyl concerning eigenvalues of linear transformation, I. Proc. Natl. Acad. Sci. USA, 35,pp.652-655.
  • Gutman, I., Kiani, D. and Mirzakhah, M., (2009), On incidence energy of graphs, MATCH Commun. Math. Comput. Chem., 62, pp.573-580.
  • Gutman, I., Li, X. and Zhang, J., (2009), Graph Energy, in: Dehmer, M.,Emmert, F.- Streib(Eds.)
  • Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, pp.145-174. Joojandeh, M. R., Kiani, D. and Mirzakhah, M., (2009), Incidence energy of a graph, MATCH
  • Commun. Math. Comput. Chem., 62, pp.561-572. Milovanov´c, I.Z., Milovanov´c, E.I. and Zaki´c, A., (2014), A short note on graph energy, MATCH
  • Commun. Math. Comput. Chem., 72, pp.179-182. O. Mohammad R., (2016), Energy and seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75, pp.291-303.
  • Ramane, H.S. and Jummannaver, R.B., (2017), Seidel laplacian energy of graphs, International Jour- nal of Applied Graph Theory, 1,2, pp.74-82.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

G. K. Gök This is me

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite