BibTex RIS Cite
Year 2019, Volume: 9 Issue: 3, 455 - 460, 01.09.2019

Abstract

References

  • Funabashi, N. K., (1977), On Normal Semigroups, Czechoslovak Mathematical Journal, 27(1), 43-53.
  • Howie, J., (1995), Fundamentals of semigroup theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York.
  • Chattopadhyay, S. and Kar, S., (2008), On the structure space of Γ-semigroup, Acta Univ. Palacki
  • Olomuc., Fac. rer. nat., Mathematica, 47, 37-46. Chattopadhyay, S., (2001), Right inverse Γ-semigroup, Bull. Cal. Math. Soc., 93(6), 435-442.
  • Chattopadhyay, S., (2005), Right orthodox Γ-semigroup, Southeast Asian Bull. of Mathematics, 29, 30.
  • Chinram, R. and Jirojkul, C., (2007), On bi-Γ-ideals in Γ-semigroups, Songklanakarin J. Sci. Technol., (1), 231-234.
  • Lajos, S.,(1964), Note on (m,n)-ideals. II, Proc. Japan Acad., 40, 631-632.
  • Petrich, M.,(1973), Introduction to Semigroups, Merill, Columbus.
  • Sen, M. K. and Saha, N. K., (1986), On Γ-semigroup I, Bull. Calcutta Math. Soc., 78, 180-186.
  • Sen, M. K., and Chattopadhyay, S.,(2004), Semidirect Product of a Monoid and a Γ-semigroup, East- West J. of Math., 6(2), 131-138.
  • Sen, M. K. and Saha, N. K.,(1990), Orthodox Γ-semigroup, Internat. J. Math. Math. Sci., 13, 527-534.
  • Sen, M. K., (1981), On Γ-semigroups, Proceedings of the International Conference on Algebra and its
  • Applications, Dekker Publications, New York, 301-308. Saha, N. K., (1987), On Γ-semigroup II, Bull. Calcutta Math. Soc., 79, 331-335.
  • Saha, N. K., (1988), On Γ-semigroup III, Bull. Calcutta Math. Soc., 80, 1-12.

ON SOME PROPERTIES OF NORMAL Γ-IDEALS IN NORMAL Γ-SEMIGROUPS

Year 2019, Volume: 9 Issue: 3, 455 - 460, 01.09.2019

Abstract

We introduce the concept of normal T-ideal and bi-T-ideal in normal T- semigroups. We characterize the normal T-semigroup and normal regular T-semigroup in terms of elementary properties of bi-T-ideal proving the various equivalent conditions. In particular, we establish, among the other things, that if I1; I2 are any two normal T- ideals of a T-semigroup S, then their product I1TI2 and I2TI1 are also normal T-ideals of S and I1TI2 = I2TI1. Finally, we show that the minimal normal T-ideal of a T-semigroup S is a T-group.

References

  • Funabashi, N. K., (1977), On Normal Semigroups, Czechoslovak Mathematical Journal, 27(1), 43-53.
  • Howie, J., (1995), Fundamentals of semigroup theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York.
  • Chattopadhyay, S. and Kar, S., (2008), On the structure space of Γ-semigroup, Acta Univ. Palacki
  • Olomuc., Fac. rer. nat., Mathematica, 47, 37-46. Chattopadhyay, S., (2001), Right inverse Γ-semigroup, Bull. Cal. Math. Soc., 93(6), 435-442.
  • Chattopadhyay, S., (2005), Right orthodox Γ-semigroup, Southeast Asian Bull. of Mathematics, 29, 30.
  • Chinram, R. and Jirojkul, C., (2007), On bi-Γ-ideals in Γ-semigroups, Songklanakarin J. Sci. Technol., (1), 231-234.
  • Lajos, S.,(1964), Note on (m,n)-ideals. II, Proc. Japan Acad., 40, 631-632.
  • Petrich, M.,(1973), Introduction to Semigroups, Merill, Columbus.
  • Sen, M. K. and Saha, N. K., (1986), On Γ-semigroup I, Bull. Calcutta Math. Soc., 78, 180-186.
  • Sen, M. K., and Chattopadhyay, S.,(2004), Semidirect Product of a Monoid and a Γ-semigroup, East- West J. of Math., 6(2), 131-138.
  • Sen, M. K. and Saha, N. K.,(1990), Orthodox Γ-semigroup, Internat. J. Math. Math. Sci., 13, 527-534.
  • Sen, M. K., (1981), On Γ-semigroups, Proceedings of the International Conference on Algebra and its
  • Applications, Dekker Publications, New York, 301-308. Saha, N. K., (1987), On Γ-semigroup II, Bull. Calcutta Math. Soc., 79, 331-335.
  • Saha, N. K., (1988), On Γ-semigroup III, Bull. Calcutta Math. Soc., 80, 1-12.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A. Basar This is me

M. Y. Abbasi This is me

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite