BibTex RIS Cite
Year 2019, Volume: 9 Issue: 3, 535 - 548, 01.09.2019

Abstract

References

  • Andrei, N., (2008), An Unconstrained Optimization Test Functions Collection, Advanced Modeling and Optimization, 10(1), 147–161.
  • Dai, Y.H., (2001), New properties of a nonlinear conjugate gradient method, Numerische Mathematik, 89, 83–98.
  • Dai, Y.H., (1997), Analysis of conjugate gradient methods. Ph.D. thesis, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences.
  • Dai, Y.H., (2002), Conjugate gradient methods with Armijo-type line searches, Acta Mathematicae Applicatae Sinica (English Series), 18(1), 123–130.
  • Dai, Y.H., Yuan, Y., (1996), Convergence properties of the Fletcher-Reeves method, IMA Journal of Numerical Analysis, 16, 155–164.
  • De L.R., Gaudioso, M., Grippo, L., (1984), Stopping criteria for linesearch methods without derivatives, Mathematical Programming, 30, 285–300.
  • Dolan, E., Mor´e, J.J., (2002), Benchmarking optimization software with performance profiles, Mathe- matical Programming, 91, 201–213.
  • Fletcher, R. and Reeves, C., (1964), Function minimization by conjugate gradients, Computer Journal, 7, 149–154.
  • Gilbert, J.C., Nocedal, J., (1992), Global convergence properties of conjugate gradient methods for optimization, SIAM Journal Optimization, 2, 21–42.
  • Grippo, L., Lucidi, S., (1997), A globally convergent version of the Polak-Ribi´ere conjugate gradient method, Mathematical Programming, 78, 375–391.
  • Hager, W.W., Zhang, H.C., (2005), A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal Optimization, 16, 170–192.
  • Hestenes, M.R., Stiefel, E., (1952), Method of conjugate gradient for solving linear systems, Journal of research of the National Bureau of Standards, 49, 409–436.
  • Polak, E., Ribi´ere, G., (1969), Note sur la convergence de directions conjug´ees. Rev, Francaise Informat Recherche Opertionelle, 3e Ann´ee, 16, 35–43.
  • Powell, M.J.D., (1984), Nonconvex minimization calculations and the conjugate gradient method, Numerical Analysis, Dundee, 1983, Lecture Notes in Mathematics, Vol. 1066, Springer-Verlag, Berlin. 122–141.
  • Powell, M.J.D., (1986), Convergence properties of algorithms for nonliniear optimization, SIAM Re- view, 26, 487–500.
  • Powell, M.J.D., (1977), Restart procedures of the conjugate gradient method, Mathematical Program- ming, 2, 241–254.
  • Shanno, D.F., (1978), On the convergence of a new conjugate gradient algorithm. SIAM Journal Numerical Analysis, 15, 1247–1257.
  • Shi, Z.J., Shen, J., (2005), Step-size estimation for unconstrained optimization methods, Journal of Computational and Applied Mathematics, 24, 399–416.
  • Shi, Z.J., Guo, J., (2009), A new family of conjugate gradient methods, Journal of Computational and Applied Mathematics, 224, 444–457.
  • Yuan, Y., (1993), Analysis on the conjugate gradient method, Optimization Methods and Software, 2, 19–29.

A DESCENT PRP CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION

Year 2019, Volume: 9 Issue: 3, 535 - 548, 01.09.2019

Abstract

It is well known that the sucient descent condition is very important to the global convergence of the nonlinear conjugate gradient methods. Also, the direction generated by a conjugate gradient method may not be a descent direction. In this paper, we propose a new Armijo-type line search algorithm such that the direction generated by the PRP conjugate gradient method has the sucient descent property and ensures the global convergence of the PRP conjugate gradient method for the unconstrained minimization of nonconvex di erentiable functions. We also present some numerical results to show the eciency of the proposed method.The results show the eciency of the proposed method in the sense of the performance pro le introduced by Dolan and More.

References

  • Andrei, N., (2008), An Unconstrained Optimization Test Functions Collection, Advanced Modeling and Optimization, 10(1), 147–161.
  • Dai, Y.H., (2001), New properties of a nonlinear conjugate gradient method, Numerische Mathematik, 89, 83–98.
  • Dai, Y.H., (1997), Analysis of conjugate gradient methods. Ph.D. thesis, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences.
  • Dai, Y.H., (2002), Conjugate gradient methods with Armijo-type line searches, Acta Mathematicae Applicatae Sinica (English Series), 18(1), 123–130.
  • Dai, Y.H., Yuan, Y., (1996), Convergence properties of the Fletcher-Reeves method, IMA Journal of Numerical Analysis, 16, 155–164.
  • De L.R., Gaudioso, M., Grippo, L., (1984), Stopping criteria for linesearch methods without derivatives, Mathematical Programming, 30, 285–300.
  • Dolan, E., Mor´e, J.J., (2002), Benchmarking optimization software with performance profiles, Mathe- matical Programming, 91, 201–213.
  • Fletcher, R. and Reeves, C., (1964), Function minimization by conjugate gradients, Computer Journal, 7, 149–154.
  • Gilbert, J.C., Nocedal, J., (1992), Global convergence properties of conjugate gradient methods for optimization, SIAM Journal Optimization, 2, 21–42.
  • Grippo, L., Lucidi, S., (1997), A globally convergent version of the Polak-Ribi´ere conjugate gradient method, Mathematical Programming, 78, 375–391.
  • Hager, W.W., Zhang, H.C., (2005), A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal Optimization, 16, 170–192.
  • Hestenes, M.R., Stiefel, E., (1952), Method of conjugate gradient for solving linear systems, Journal of research of the National Bureau of Standards, 49, 409–436.
  • Polak, E., Ribi´ere, G., (1969), Note sur la convergence de directions conjug´ees. Rev, Francaise Informat Recherche Opertionelle, 3e Ann´ee, 16, 35–43.
  • Powell, M.J.D., (1984), Nonconvex minimization calculations and the conjugate gradient method, Numerical Analysis, Dundee, 1983, Lecture Notes in Mathematics, Vol. 1066, Springer-Verlag, Berlin. 122–141.
  • Powell, M.J.D., (1986), Convergence properties of algorithms for nonliniear optimization, SIAM Re- view, 26, 487–500.
  • Powell, M.J.D., (1977), Restart procedures of the conjugate gradient method, Mathematical Program- ming, 2, 241–254.
  • Shanno, D.F., (1978), On the convergence of a new conjugate gradient algorithm. SIAM Journal Numerical Analysis, 15, 1247–1257.
  • Shi, Z.J., Shen, J., (2005), Step-size estimation for unconstrained optimization methods, Journal of Computational and Applied Mathematics, 24, 399–416.
  • Shi, Z.J., Guo, J., (2009), A new family of conjugate gradient methods, Journal of Computational and Applied Mathematics, 224, 444–457.
  • Yuan, Y., (1993), Analysis on the conjugate gradient method, Optimization Methods and Software, 2, 19–29.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. Nosratıpour This is me

K. Amini This is me

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite