BibTex RIS Cite

NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SYSTEMS OF COUPLED FRACTIONAL BVPS WITH p-LAPLACIAN

Year 2019, Volume: 9 Issue: 3, 0 - 11, 01.09.2019

Abstract

We investigate the nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional di erential equations with p-Laplacian two-point boundary value problem.

References

  • Agarwal, R. P. Zhou, Y. and He Y., (2010), Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59, 1095-3554.
  • Ahmad, B. Ntouyas, S. K., (2012), A note on fractional differential differential equations with frac- tional separated boundary conditions, Abstr. Appl. Anal., Article ID 818703, 1-11.
  • Benchohra, M. Hamani, S. Henderson, J. Ntouyas, S. K. and Ouahab, A., (2007), Positive solutions for systems of nonlinear eigenvalue problems, Global. J. Math. Anal., 1, 19-28.
  • Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, (2010), Nonlinear Anal., 72, 916-924.
  • Bai, Z. Lu, H., (2005), Positive solutions for boundary value problems of nonlinear fractional differ- ential equations, J. Math. Anal. Appl., 311, 495-505.
  • Das, S., (2008), Functional Fractional Calculus for System Identification and Controls. Springer, New York.
  • Henderson, J., Wang, H., (1997) Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208, 252-259.
  • Henderson, J. Luca, R., (2015) Nonexistence of positive solutions for a system of coupled fractional- boundary value problems, Bound. Value Probl., 138, doi: 10.1186/s13661-015-0403-8.
  • Han, X. Gao, H., (2012) Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations, Adv. Differ. Equ., 66.
  • Kilbas, A. A. Srivastava, H. M. and Trujillo,J. J., (2016) Theory and Applications of Fractional Differential Equations., North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam. [11] Luka, R. Deliu, C., (2013) Nonexistence of positive solutions for a system of higher-order multi-point boundary value problems, Romai J., 9, 69-77.
  • Lu,H. Han, Z. and Sun,S., (2014) Multiplicity of positive solutions for Sturm-Liouville boundary value problems with p-Laplacian, Bound. Value Probl., 26, doi: 10.1186/1687-2770-2014-26.
  • Liang, S. Zhang, J., (2009) Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71, 5545-5550.
  • Rao,S. N. Prasad,K. R., (2015) Nonexistence of positive solutions for a system of nonlinear multi-point boundary value problems on time scales, Math. Commun., 20, 69-81.
  • Rao,S. N., (2015) Existence and nonexistence of positive solutions for a system of even order dynamic equation on time scales, J. Appl. Math. and Informatics., 33, No. 5-6, 531-543.
  • Nageswararao, S., (2015) Existence of positive solutions for RiemannLiouville fractional order three- point boundary value problem, Asian-Eur. J. Math., 8, No.4, doi: 10.1142/s 1793557115500576.
  • Nageswararao, S., (2016) Existence and multiplicity for a system of fractional higher-order two-point boundary value problem, J. Appl. Math. Comput., 51, 93-107, doi: 10.1007/s 12190-015-0893-7.
  • Rao,S. N., (2016) Multiplicity of Positive Solutions for Fractional Differential Equation with p- Laplacian Boundary Value Problems, Int. J. Differ. Equ., Article ID 6906049, 10 pages, DOI: 10.1155/2016/6906049.
  • Nageswararao, S.,(2017) Solvability for a system of nonlinear fractional higher-order three-point boundary value problem. Fract. Differ. Calc., 7, No. 1, 151-167, doi:10.7153/fdc-07-04.
  • Prasad, K. R, Rao,S. N, and Murali, P., (2009) Solvability of a nonlinear general third order two-point eigenvalue problem on time scales, Differ. Equ. Dyn. Syst., 17, No. 3, 269-282.
  • Prasad, K. R, Rao, S. N. and Rao, A. K., (2010) Solvability for even-order three-point boundary value problems on time scales, Int. J. Appl. Math., 23, No. 1, 23-41.
  • Podlubny, I., (1999) Fractional Differential Equations. Mathematics in Science and Engineering, Aca- demic Press, New York, 198.
  • Sabatier, J. Agrawal, PO, and Machado, JAT., (2007) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht.
  • Shimoto, K.N., (1990) Fractional Calculus and its applications. Nihon University, koriyama.
  • Tu, S. Nishimoto, K. and Jaw, S.,(1993) Applications of fractional calculus to ordinary and partial diffeential equations of second order, Hiroshima Math. J., 23, 63-67.
Year 2019, Volume: 9 Issue: 3, 0 - 11, 01.09.2019

Abstract

References

  • Agarwal, R. P. Zhou, Y. and He Y., (2010), Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59, 1095-3554.
  • Ahmad, B. Ntouyas, S. K., (2012), A note on fractional differential differential equations with frac- tional separated boundary conditions, Abstr. Appl. Anal., Article ID 818703, 1-11.
  • Benchohra, M. Hamani, S. Henderson, J. Ntouyas, S. K. and Ouahab, A., (2007), Positive solutions for systems of nonlinear eigenvalue problems, Global. J. Math. Anal., 1, 19-28.
  • Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, (2010), Nonlinear Anal., 72, 916-924.
  • Bai, Z. Lu, H., (2005), Positive solutions for boundary value problems of nonlinear fractional differ- ential equations, J. Math. Anal. Appl., 311, 495-505.
  • Das, S., (2008), Functional Fractional Calculus for System Identification and Controls. Springer, New York.
  • Henderson, J., Wang, H., (1997) Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208, 252-259.
  • Henderson, J. Luca, R., (2015) Nonexistence of positive solutions for a system of coupled fractional- boundary value problems, Bound. Value Probl., 138, doi: 10.1186/s13661-015-0403-8.
  • Han, X. Gao, H., (2012) Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations, Adv. Differ. Equ., 66.
  • Kilbas, A. A. Srivastava, H. M. and Trujillo,J. J., (2016) Theory and Applications of Fractional Differential Equations., North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam. [11] Luka, R. Deliu, C., (2013) Nonexistence of positive solutions for a system of higher-order multi-point boundary value problems, Romai J., 9, 69-77.
  • Lu,H. Han, Z. and Sun,S., (2014) Multiplicity of positive solutions for Sturm-Liouville boundary value problems with p-Laplacian, Bound. Value Probl., 26, doi: 10.1186/1687-2770-2014-26.
  • Liang, S. Zhang, J., (2009) Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71, 5545-5550.
  • Rao,S. N. Prasad,K. R., (2015) Nonexistence of positive solutions for a system of nonlinear multi-point boundary value problems on time scales, Math. Commun., 20, 69-81.
  • Rao,S. N., (2015) Existence and nonexistence of positive solutions for a system of even order dynamic equation on time scales, J. Appl. Math. and Informatics., 33, No. 5-6, 531-543.
  • Nageswararao, S., (2015) Existence of positive solutions for RiemannLiouville fractional order three- point boundary value problem, Asian-Eur. J. Math., 8, No.4, doi: 10.1142/s 1793557115500576.
  • Nageswararao, S., (2016) Existence and multiplicity for a system of fractional higher-order two-point boundary value problem, J. Appl. Math. Comput., 51, 93-107, doi: 10.1007/s 12190-015-0893-7.
  • Rao,S. N., (2016) Multiplicity of Positive Solutions for Fractional Differential Equation with p- Laplacian Boundary Value Problems, Int. J. Differ. Equ., Article ID 6906049, 10 pages, DOI: 10.1155/2016/6906049.
  • Nageswararao, S.,(2017) Solvability for a system of nonlinear fractional higher-order three-point boundary value problem. Fract. Differ. Calc., 7, No. 1, 151-167, doi:10.7153/fdc-07-04.
  • Prasad, K. R, Rao,S. N, and Murali, P., (2009) Solvability of a nonlinear general third order two-point eigenvalue problem on time scales, Differ. Equ. Dyn. Syst., 17, No. 3, 269-282.
  • Prasad, K. R, Rao, S. N. and Rao, A. K., (2010) Solvability for even-order three-point boundary value problems on time scales, Int. J. Appl. Math., 23, No. 1, 23-41.
  • Podlubny, I., (1999) Fractional Differential Equations. Mathematics in Science and Engineering, Aca- demic Press, New York, 198.
  • Sabatier, J. Agrawal, PO, and Machado, JAT., (2007) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht.
  • Shimoto, K.N., (1990) Fractional Calculus and its applications. Nihon University, koriyama.
  • Tu, S. Nishimoto, K. and Jaw, S.,(1993) Applications of fractional calculus to ordinary and partial diffeential equations of second order, Hiroshima Math. J., 23, 63-67.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. N. Rao This is me

M. Z. Meetei This is me

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite