BibTex RIS Cite

GENERALIZED POWER POMPEIU TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS WITH APPLICATIONS TO OSTROWSKI'S INEQUALITY

Year 2019, Volume: 9 Issue: 3, 609 - 619, 01.09.2019

Abstract

We establish some generalizations of power Pompeiu's inequality for local fractional integral. Afterwards, these results gave some new generalized Ostrowski type inequalities. Finally, some applications of these inequalities for generalized special means are obtained.

References

  • Acu, A. M., Babos, A. and Sofonea, F. D., (2011), The mean value theorems and inequalities of Ostrowski type, Sci. Stud. Res. Ser. Math. Inform, 21(1), pp. 5–16.
  • Ahmad, F., Mir, N. A. and Sarikaya, M. Z., (2014) An inequality of Ostrowski type via variant of Pompeiu’s mean value theorem, J. Basic. Appl. Sci. Res, 4(4), pp. 204-211.
  • Chen, G-S., (2013), Generalizations of H¨older’s and some related integral inequalities on fractal space. Journal of Function Spaces and Applications, Article ID 198405, 9 pages.
  • Dragomir, S. S., (2005), An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math, 6(3), Art. 83.
  • Dragomir, S. S., (2013), Power Pompeiu’s type inequalities for absolutely continuous functions with applications to Ostrowski’s inequality, RGMIA Research Report Collection, 16 (Article 68), 8 pages.
  • Erden, S. and Sarikaya, M.Z., (2016), Generalized Pompeiu type inequalities for local fractional integrals and Its Applications, Apllied Math. and Computations, 274, pp. 282-291.
  • Mo, H., Sui, X. and Yu, D., (2014), Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis, Article ID 636751, 7 pages.
  • Ostrowski, A. M., (1938), ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem inte- gralmitelwert, Comment. Math. Helv., 10, pp. 226-227.
  • Pompeiu, D., (1946), Sur une proposition analogue au th´eor´eme des accroissements finis, Mathematica (Cluj, Romania), 22, pp. 143-146.
  • Sarikaya, M. Z. and Budak, H., (2014) On an inequality of Ostrowski type via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 78), 11 pages.
  • Sarikaya, M. Z., (2014), On an inequality of Gr¨uss type via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 77), 9 pages.
  • Sarikaya, M.Z., (2014), Some new integral inequalities via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 76), 7 pages.
  • Sarikaya, M. Z. and Budak, H., (2015), Generalized Ostrowski type inequalities for local fractional integrals, RGMIA Research Report Collection, 17(Article 62), 11 pages.
  • Yang, X.J., (2012), Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York.
  • Yang, X.J., (2011), Local Fractional Functional Analysis and Its Applications, Asian Academic pub- lisher Limited, Hong Kong.
  • Yang, J., Baleanu, D. and Yang, X. J., (2013) Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys, Article ID 632309.
  • Yang, X. J., (2014), Local fractional integral equations and their applications, Advances in Computer Science and its Applications (ACSA), 1(4).
  • Yang, X. J., (2012), Generalized local fractional Taylor’s formula with local fractional derivative. Journal of Expert Systems, 1(1), pp. 26-30.
  • Yang, X. J., (2012), Local fractional Fourier analysis, Advances in Mechanical Engineering and its Applications, 1(1), pp. 12-16.
Year 2019, Volume: 9 Issue: 3, 609 - 619, 01.09.2019

Abstract

References

  • Acu, A. M., Babos, A. and Sofonea, F. D., (2011), The mean value theorems and inequalities of Ostrowski type, Sci. Stud. Res. Ser. Math. Inform, 21(1), pp. 5–16.
  • Ahmad, F., Mir, N. A. and Sarikaya, M. Z., (2014) An inequality of Ostrowski type via variant of Pompeiu’s mean value theorem, J. Basic. Appl. Sci. Res, 4(4), pp. 204-211.
  • Chen, G-S., (2013), Generalizations of H¨older’s and some related integral inequalities on fractal space. Journal of Function Spaces and Applications, Article ID 198405, 9 pages.
  • Dragomir, S. S., (2005), An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math, 6(3), Art. 83.
  • Dragomir, S. S., (2013), Power Pompeiu’s type inequalities for absolutely continuous functions with applications to Ostrowski’s inequality, RGMIA Research Report Collection, 16 (Article 68), 8 pages.
  • Erden, S. and Sarikaya, M.Z., (2016), Generalized Pompeiu type inequalities for local fractional integrals and Its Applications, Apllied Math. and Computations, 274, pp. 282-291.
  • Mo, H., Sui, X. and Yu, D., (2014), Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis, Article ID 636751, 7 pages.
  • Ostrowski, A. M., (1938), ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem inte- gralmitelwert, Comment. Math. Helv., 10, pp. 226-227.
  • Pompeiu, D., (1946), Sur une proposition analogue au th´eor´eme des accroissements finis, Mathematica (Cluj, Romania), 22, pp. 143-146.
  • Sarikaya, M. Z. and Budak, H., (2014) On an inequality of Ostrowski type via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 78), 11 pages.
  • Sarikaya, M. Z., (2014), On an inequality of Gr¨uss type via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 77), 9 pages.
  • Sarikaya, M.Z., (2014), Some new integral inequalities via variant of Pompeiu’s mean value theorem, RGMIA Research Report Collection, 17(Article 76), 7 pages.
  • Sarikaya, M. Z. and Budak, H., (2015), Generalized Ostrowski type inequalities for local fractional integrals, RGMIA Research Report Collection, 17(Article 62), 11 pages.
  • Yang, X.J., (2012), Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York.
  • Yang, X.J., (2011), Local Fractional Functional Analysis and Its Applications, Asian Academic pub- lisher Limited, Hong Kong.
  • Yang, J., Baleanu, D. and Yang, X. J., (2013) Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys, Article ID 632309.
  • Yang, X. J., (2014), Local fractional integral equations and their applications, Advances in Computer Science and its Applications (ACSA), 1(4).
  • Yang, X. J., (2012), Generalized local fractional Taylor’s formula with local fractional derivative. Journal of Expert Systems, 1(1), pp. 26-30.
  • Yang, X. J., (2012), Local fractional Fourier analysis, Advances in Mechanical Engineering and its Applications, 1(1), pp. 12-16.
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. Erden This is me

M. Z. Sarıkaya This is me

S. S. Dragomir This is me

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite