BibTex RIS Cite
Year 2019, Volume: 9 Issue: 3, 658 - 665, 01.09.2019

Abstract

References

  • Aslan, E., (2014), The Average Lower Connectivity of Graphs, Journal of Applied Mathematics, 2014, ID:807834, 4 Pages.
  • Ayta¸c, A. and Odabas, Z.N., (2011), Residual Closeness of Wheels and Related Networks, Interna- tional Journal of Foundations of Computer Science, 22(5), pp. 1229-1240.
  • Ayta¸c, A. and Turaci, T., (2011), Vertex Vulnerability Parameter of Gear Graphs, International Journal of Foundations of Computer Science, 22(5), pp. 1187-1195.
  • Ayta¸c, A., Turaci, T. and Odabas, Z.N., (2013), On The Bondage Number of Middle Graphs, Math- ematical Notes, 93(6), pp. 803-811.
  • Ayta¸c, A., Odabas, Z.N. and Turaci, T.,(2011), The Bondage Number for Some Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 64(7), pp. 925-930.
  • Ayta¸c, V., (2012), Average Lower Domination Number in Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 65(12), pp. 1665-1674.
  • Barefoot, C.A., Entringer, R. and Swart, H., (1987), Vulnerability in graphs-a comparative survey, J. Combin. Math. Combin. Comput., 1, pp. 13-22.
  • Bauer, D., Harary, F., Nieminen, J. and Suffel C. L., (1983), Domination alteration sets in graph, Discrete Math., 47, pp. 153-161.
  • Beineke, L.W., Oellermann, O.R. and Pippert, R.E., (2002), The Average Connectivity of a Graph, Disc. Math., 252(1-3), pp. 31-45.
  • Blidia, M., Chellali, M. and Maffray, F., (2005), On Average Lower Independence and Domination Number in Graphs, Disc. Math., 295, pp. 1-11.
  • Chellali, M., (2006), Bounds on the 2-Domination Number in Cactus Graps, Opuscula Mathematica, 26(1), pp. 5-12.
  • Chvatal, V., (1973), Tough graphs and Hamiltonian circuits, Discrete Math., 5, pp. 215-228.
  • Fink, J.F. and Jacobson M.S., (1985), n-domination in graphs, in: Alavi Y. and Schwenk A. J.(eds), Graph Theory with Applications to Algorithms and Computer Science, NewYork, Wiley, pp. 283-300.
  • Frank, H. and Frisch, I.T., (1970), Analysis and design of survivable Networks, IEEE Transactions on Communications Technology, 18(5), pp. 501-519.
  • Henning, M.A. and Oellermann, O.R., (2004), The Average Connectivity of a Digraph, Discrete App. Math., 140(1-3), pp. 143-153.
  • Henning, M.A., (2004), Trees with Equal Average Domination and Independent Domination Numbers, Ars Combin., 71, pp. 305-318.
  • Javaid, I. and Shokat, S., (2008), On the Partition Dimension of Some Wheel Related Graphs, Journal of Prime Research in Mathematics, 4, pp. 154-164.
  • Krzywkowski, M., (2013), 2-bondage in graphs, International Journal of Computer Mathematics, 90(7), pp. 1358-1365.
  • Mishkovski, I., Biey, M. and Kocarev, L., (2011), Vulnerability of complex Networks, Commun. Non- linear Sci Numer Simulat., 16, pp. 341-349.
  • Newport, K.T. and Varshney, P.K., (1991), Design of survivable communication networks under per- formance constraints, IEEE Transactions on Reliability, 40, pp. 433-440.
  • Tuncel, G.H., Turaci, T. and Coskun, B., (2015), The Average Lower Domination Number and Some Results of Complementary Prisms and Graph Join, Journal of Advanced Research in Applied Math- ematics, 7(1), pp. 52-61.
  • Turaci, T. and Okten, M., (2015), Vulnerability Of Mycielski Graphs via Residual Closeness, Ars Combinatoria, 118, pp. 419-427.
  • Turaci, T., (2016), On The Average Lower Bondage Number a Graph, RAIRO-Operations Research, 50(4-5), pp. 1003-1012.

ON THE AVERAGE LOWER 2-DOMINATION NUMBER OF A GRAPH

Year 2019, Volume: 9 Issue: 3, 658 - 665, 01.09.2019

Abstract

Computer scientists and network scientists want a speedy, reliable, and nonstop communication. In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stationsor communication links. The average lower 2-domination number of a graph G relative to a vertex v is the cardinality of a minimum 2-dominating set in G containingv. Consider the graph G modeling a network. The average lower 2-domination number of G, denoted as γ2av G , is a new measure of the network vulnerability, given byγ2av G =defined and examined, also the average lower 2-domination number of well known graphfamilies are calculated. Then upper and lower bounds are determined and exact formulasare found for the average lower 2-domination number of any graph G

References

  • Aslan, E., (2014), The Average Lower Connectivity of Graphs, Journal of Applied Mathematics, 2014, ID:807834, 4 Pages.
  • Ayta¸c, A. and Odabas, Z.N., (2011), Residual Closeness of Wheels and Related Networks, Interna- tional Journal of Foundations of Computer Science, 22(5), pp. 1229-1240.
  • Ayta¸c, A. and Turaci, T., (2011), Vertex Vulnerability Parameter of Gear Graphs, International Journal of Foundations of Computer Science, 22(5), pp. 1187-1195.
  • Ayta¸c, A., Turaci, T. and Odabas, Z.N., (2013), On The Bondage Number of Middle Graphs, Math- ematical Notes, 93(6), pp. 803-811.
  • Ayta¸c, A., Odabas, Z.N. and Turaci, T.,(2011), The Bondage Number for Some Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 64(7), pp. 925-930.
  • Ayta¸c, V., (2012), Average Lower Domination Number in Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 65(12), pp. 1665-1674.
  • Barefoot, C.A., Entringer, R. and Swart, H., (1987), Vulnerability in graphs-a comparative survey, J. Combin. Math. Combin. Comput., 1, pp. 13-22.
  • Bauer, D., Harary, F., Nieminen, J. and Suffel C. L., (1983), Domination alteration sets in graph, Discrete Math., 47, pp. 153-161.
  • Beineke, L.W., Oellermann, O.R. and Pippert, R.E., (2002), The Average Connectivity of a Graph, Disc. Math., 252(1-3), pp. 31-45.
  • Blidia, M., Chellali, M. and Maffray, F., (2005), On Average Lower Independence and Domination Number in Graphs, Disc. Math., 295, pp. 1-11.
  • Chellali, M., (2006), Bounds on the 2-Domination Number in Cactus Graps, Opuscula Mathematica, 26(1), pp. 5-12.
  • Chvatal, V., (1973), Tough graphs and Hamiltonian circuits, Discrete Math., 5, pp. 215-228.
  • Fink, J.F. and Jacobson M.S., (1985), n-domination in graphs, in: Alavi Y. and Schwenk A. J.(eds), Graph Theory with Applications to Algorithms and Computer Science, NewYork, Wiley, pp. 283-300.
  • Frank, H. and Frisch, I.T., (1970), Analysis and design of survivable Networks, IEEE Transactions on Communications Technology, 18(5), pp. 501-519.
  • Henning, M.A. and Oellermann, O.R., (2004), The Average Connectivity of a Digraph, Discrete App. Math., 140(1-3), pp. 143-153.
  • Henning, M.A., (2004), Trees with Equal Average Domination and Independent Domination Numbers, Ars Combin., 71, pp. 305-318.
  • Javaid, I. and Shokat, S., (2008), On the Partition Dimension of Some Wheel Related Graphs, Journal of Prime Research in Mathematics, 4, pp. 154-164.
  • Krzywkowski, M., (2013), 2-bondage in graphs, International Journal of Computer Mathematics, 90(7), pp. 1358-1365.
  • Mishkovski, I., Biey, M. and Kocarev, L., (2011), Vulnerability of complex Networks, Commun. Non- linear Sci Numer Simulat., 16, pp. 341-349.
  • Newport, K.T. and Varshney, P.K., (1991), Design of survivable communication networks under per- formance constraints, IEEE Transactions on Reliability, 40, pp. 433-440.
  • Tuncel, G.H., Turaci, T. and Coskun, B., (2015), The Average Lower Domination Number and Some Results of Complementary Prisms and Graph Join, Journal of Advanced Research in Applied Math- ematics, 7(1), pp. 52-61.
  • Turaci, T. and Okten, M., (2015), Vulnerability Of Mycielski Graphs via Residual Closeness, Ars Combinatoria, 118, pp. 419-427.
  • Turaci, T., (2016), On The Average Lower Bondage Number a Graph, RAIRO-Operations Research, 50(4-5), pp. 1003-1012.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

T. Turacı This is me

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite