Year 2019,
Volume: 9 Issue: 2, 267 - 278, 01.06.2019
O. E. Hepson
A. Korkmaz
I. Dag
References
- [1] Kalinowski, M. W., & Grundland, M., (1981), An exact solution of the Korteweg-de Vries equation with dissipation. Letters in Mathematical Physics, 5(1), 61-65.
- [2] Ruderman, M. S.,(1975), Method of derivation of the Korteweg-de Vries-Burgers equation: PMM vol. 39, 4, 1975, pp. 686-694. Journal of Applied Mathematics and Mechanics, 39(4), 656-664.
- [3] Bampi, F., & Morro, A. ,(1981), Effects of viscosity on water waves. Il Nuovo Cimento C, 4(5), 551-562.
- [4] Brugarino, T., & Pantano, P. ,(1983), KdV-Burgers’ equation and nonlinear transmission lines. Lettere Al Nuovo Cimento (1971-1985), 38(14), 475-479.
- [5] Parkes, E. J., & Duffy, B. R.,(1997), Travelling solitary wave solutions to a compound KdV-Burgers equation. Physics Letters A, 229(4), 217-220.
- [6] Shu, J. J.,(1987), The proper analytical solution of the Korteweg-de Vries-Burgers equation. Journal of Physics A: Mathematical and General, 20(2), L49-L56.
- [7] Gromov, E. M., & Tyutin, V. V.,(1997), Stationary waves described by a generalized KdV-Burgers equation. Radiophysics and quantum electronics, 40(10), 835-840.
- [8] Wang, M.,(1996), Exact solutions for a compound KdV-Burgers equation. Physics Letters A, 213(5), 279-287.
- [9] Zhao, H.,(2006), New explicit and exact solutions for a compound KdV-Burgers equation. Czechoslovak Journal of Physics, 56(8), 799-805.
- [10] Yuanxi, X., & Jiashi, T.,(2005), New solitary wave solutions to the KdV-Burgers equation. International Journal of Theoretical Physics, 44(3), 293-301.
- [11] Wazzan, L. A.,(2007), MORE SOLITON SOLUTIONS TO THE KDV AND THE KDV-BURGERS, Proc. Pakistan Acad. Sci. 44(2):117-120.2007.
- [12] Soliman, A. A.,(2006), The modified extended tanh-function method for solving Burgers-type equations. Physica A: Statistical Mechanics and its Applications, 361(2), 394-404.
- [13] Wang, G. W., Liu, Y. T., & Zhang, Y. Y., (2014), New exact solutions to the compound KdV-Burgers system with nonlinear terms of any order. Afrika Matematika, 25(2), 357-362.
- [14] Wazwaz, A. M.,(2006), The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations. Physica D: Nonlinear Phenomena, 213(2), 147-151.
- [15] Kudryashov, N. A.,(2009), On ’new travelling wave solutions’ of the KdV and the KdV-Burgers equations. Communications in Nonlinear Science and Numerical Simulation, 14(5), 1891-1900.
- [16] Zaki, S. I.,(2000), Solitary waves of the Korteweg-de Vries-Burgers’ equation. Computer physics communications, 126(3), 207-218.
- [17] Zaki, S. I.,(2000), A quintic B-spline finite elements scheme for the KdVB equation. Computer methods in applied mechanics and engineering, 188(1), 121-134.
- [18] Ersoy, O. & Dag, I.,(2015), The extended B-spline collocation method for numerical solutions of Fisher equation. Air Conference Proceedings, 1648, 370011.
- [19] Heilat, A. S., Hamid, N. N. A. & Ismail, A. I., (2016), Extended cubic B-spline method for solving a linear system of second order boundary value problems. SpringerPlus 5, 1314.
- [20] Saka, B., & Dag, I.,(2009), Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation. Applied Mathematics and Computation, 215, 746–758.
- [21] L¨u, S., & Lu, Q.,(2006), Fourier spectral approximation to long-time behavior of dissipative generalized KdV-Burgers equations. SIAM journal on numerical analysis, 44(2), 561-585.
- [22] Prenter, P. M.,(1989), Splines and variational methods, John Wiley & Sons, New York.
- [23] Irk, D., Dag, I., & Tombul, M.,(2015), Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering, 19(4), 929-934.
- [24] Fan, E., & Zhang, H., (1998), A note on the homogeneous balance method. Physics Letters A, 246(5), 403-406.
- [25] Haq, S., & Uddin, M.,(2009), A mesh-free method for the numerical solution of the KdV-Burgers equation. Applied Mathematical Modelling, 33(8), 3442-3449.
- [26] L. R. T. Gardner, G. A. Gardner, and A. H. A. Ali. (1989), A finite element solution for the Kortewegde Vries equation using cubic B-splines, U.C.N.W. Maths, 89.01.
- [27] Korkmaz, A., (2010), Numerical algorithms for solutions of Korteweg-de Vries equation. Numerical methods for partial differential equations, 26(6), 1504-1521.
- [28] Ersoy, O., & Dag, I.,( 2015), The exponential cubic B-spline algorithm for Korteweg-de Vries equation, Advances in Numerical Analysis, Article ID 367056, 1-8
- [29] Miura, R. M., Gardner, C. S., & Kruskal, M. D., (1968), Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. Journal of Mathematical physics, 9(8), 1204-1209.
EXTENDED B-SPLINE COLLOCATION METHOD FOR KDV-BURGERS EQUATION
Year 2019,
Volume: 9 Issue: 2, 267 - 278, 01.06.2019
O. E. Hepson
A. Korkmaz
I. Dag
Abstract
The extended form of the classical polynomial cubic B-spline function is used to set up a collocation method for some initial boundary value problems derived for the Korteweg-de Vries-Burgers equation. Having nonexistence of third order derivatives of the cubic B-splines forces us to reduce the order of the term uxxx to give a coupled system of equations. The space discretization of this system is accomplished by the collocation method following the time discretization with Crank-Nicolson method. Two initial boundary value problems, one having analytical solution and the other is set up with a non analytical initial condition, have been simulated by the proposed method.
References
- [1] Kalinowski, M. W., & Grundland, M., (1981), An exact solution of the Korteweg-de Vries equation with dissipation. Letters in Mathematical Physics, 5(1), 61-65.
- [2] Ruderman, M. S.,(1975), Method of derivation of the Korteweg-de Vries-Burgers equation: PMM vol. 39, 4, 1975, pp. 686-694. Journal of Applied Mathematics and Mechanics, 39(4), 656-664.
- [3] Bampi, F., & Morro, A. ,(1981), Effects of viscosity on water waves. Il Nuovo Cimento C, 4(5), 551-562.
- [4] Brugarino, T., & Pantano, P. ,(1983), KdV-Burgers’ equation and nonlinear transmission lines. Lettere Al Nuovo Cimento (1971-1985), 38(14), 475-479.
- [5] Parkes, E. J., & Duffy, B. R.,(1997), Travelling solitary wave solutions to a compound KdV-Burgers equation. Physics Letters A, 229(4), 217-220.
- [6] Shu, J. J.,(1987), The proper analytical solution of the Korteweg-de Vries-Burgers equation. Journal of Physics A: Mathematical and General, 20(2), L49-L56.
- [7] Gromov, E. M., & Tyutin, V. V.,(1997), Stationary waves described by a generalized KdV-Burgers equation. Radiophysics and quantum electronics, 40(10), 835-840.
- [8] Wang, M.,(1996), Exact solutions for a compound KdV-Burgers equation. Physics Letters A, 213(5), 279-287.
- [9] Zhao, H.,(2006), New explicit and exact solutions for a compound KdV-Burgers equation. Czechoslovak Journal of Physics, 56(8), 799-805.
- [10] Yuanxi, X., & Jiashi, T.,(2005), New solitary wave solutions to the KdV-Burgers equation. International Journal of Theoretical Physics, 44(3), 293-301.
- [11] Wazzan, L. A.,(2007), MORE SOLITON SOLUTIONS TO THE KDV AND THE KDV-BURGERS, Proc. Pakistan Acad. Sci. 44(2):117-120.2007.
- [12] Soliman, A. A.,(2006), The modified extended tanh-function method for solving Burgers-type equations. Physica A: Statistical Mechanics and its Applications, 361(2), 394-404.
- [13] Wang, G. W., Liu, Y. T., & Zhang, Y. Y., (2014), New exact solutions to the compound KdV-Burgers system with nonlinear terms of any order. Afrika Matematika, 25(2), 357-362.
- [14] Wazwaz, A. M.,(2006), The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations. Physica D: Nonlinear Phenomena, 213(2), 147-151.
- [15] Kudryashov, N. A.,(2009), On ’new travelling wave solutions’ of the KdV and the KdV-Burgers equations. Communications in Nonlinear Science and Numerical Simulation, 14(5), 1891-1900.
- [16] Zaki, S. I.,(2000), Solitary waves of the Korteweg-de Vries-Burgers’ equation. Computer physics communications, 126(3), 207-218.
- [17] Zaki, S. I.,(2000), A quintic B-spline finite elements scheme for the KdVB equation. Computer methods in applied mechanics and engineering, 188(1), 121-134.
- [18] Ersoy, O. & Dag, I.,(2015), The extended B-spline collocation method for numerical solutions of Fisher equation. Air Conference Proceedings, 1648, 370011.
- [19] Heilat, A. S., Hamid, N. N. A. & Ismail, A. I., (2016), Extended cubic B-spline method for solving a linear system of second order boundary value problems. SpringerPlus 5, 1314.
- [20] Saka, B., & Dag, I.,(2009), Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation. Applied Mathematics and Computation, 215, 746–758.
- [21] L¨u, S., & Lu, Q.,(2006), Fourier spectral approximation to long-time behavior of dissipative generalized KdV-Burgers equations. SIAM journal on numerical analysis, 44(2), 561-585.
- [22] Prenter, P. M.,(1989), Splines and variational methods, John Wiley & Sons, New York.
- [23] Irk, D., Dag, I., & Tombul, M.,(2015), Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering, 19(4), 929-934.
- [24] Fan, E., & Zhang, H., (1998), A note on the homogeneous balance method. Physics Letters A, 246(5), 403-406.
- [25] Haq, S., & Uddin, M.,(2009), A mesh-free method for the numerical solution of the KdV-Burgers equation. Applied Mathematical Modelling, 33(8), 3442-3449.
- [26] L. R. T. Gardner, G. A. Gardner, and A. H. A. Ali. (1989), A finite element solution for the Kortewegde Vries equation using cubic B-splines, U.C.N.W. Maths, 89.01.
- [27] Korkmaz, A., (2010), Numerical algorithms for solutions of Korteweg-de Vries equation. Numerical methods for partial differential equations, 26(6), 1504-1521.
- [28] Ersoy, O., & Dag, I.,( 2015), The exponential cubic B-spline algorithm for Korteweg-de Vries equation, Advances in Numerical Analysis, Article ID 367056, 1-8
- [29] Miura, R. M., Gardner, C. S., & Kruskal, M. D., (1968), Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. Journal of Mathematical physics, 9(8), 1204-1209.