BibTex RIS Cite
Year 2019, Volume: 9 Issue: 2, 267 - 278, 01.06.2019

Abstract

References

  • [1] Kalinowski, M. W., & Grundland, M., (1981), An exact solution of the Korteweg-de Vries equation with dissipation. Letters in Mathematical Physics, 5(1), 61-65.
  • [2] Ruderman, M. S.,(1975), Method of derivation of the Korteweg-de Vries-Burgers equation: PMM vol. 39, 4, 1975, pp. 686-694. Journal of Applied Mathematics and Mechanics, 39(4), 656-664.
  • [3] Bampi, F., & Morro, A. ,(1981), Effects of viscosity on water waves. Il Nuovo Cimento C, 4(5), 551-562.
  • [4] Brugarino, T., & Pantano, P. ,(1983), KdV-Burgers’ equation and nonlinear transmission lines. Lettere Al Nuovo Cimento (1971-1985), 38(14), 475-479.
  • [5] Parkes, E. J., & Duffy, B. R.,(1997), Travelling solitary wave solutions to a compound KdV-Burgers equation. Physics Letters A, 229(4), 217-220.
  • [6] Shu, J. J.,(1987), The proper analytical solution of the Korteweg-de Vries-Burgers equation. Journal of Physics A: Mathematical and General, 20(2), L49-L56.
  • [7] Gromov, E. M., & Tyutin, V. V.,(1997), Stationary waves described by a generalized KdV-Burgers equation. Radiophysics and quantum electronics, 40(10), 835-840.
  • [8] Wang, M.,(1996), Exact solutions for a compound KdV-Burgers equation. Physics Letters A, 213(5), 279-287.
  • [9] Zhao, H.,(2006), New explicit and exact solutions for a compound KdV-Burgers equation. Czechoslovak Journal of Physics, 56(8), 799-805.
  • [10] Yuanxi, X., & Jiashi, T.,(2005), New solitary wave solutions to the KdV-Burgers equation. International Journal of Theoretical Physics, 44(3), 293-301.
  • [11] Wazzan, L. A.,(2007), MORE SOLITON SOLUTIONS TO THE KDV AND THE KDV-BURGERS, Proc. Pakistan Acad. Sci. 44(2):117-120.2007.
  • [12] Soliman, A. A.,(2006), The modified extended tanh-function method for solving Burgers-type equations. Physica A: Statistical Mechanics and its Applications, 361(2), 394-404.
  • [13] Wang, G. W., Liu, Y. T., & Zhang, Y. Y., (2014), New exact solutions to the compound KdV-Burgers system with nonlinear terms of any order. Afrika Matematika, 25(2), 357-362.
  • [14] Wazwaz, A. M.,(2006), The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations. Physica D: Nonlinear Phenomena, 213(2), 147-151.
  • [15] Kudryashov, N. A.,(2009), On ’new travelling wave solutions’ of the KdV and the KdV-Burgers equations. Communications in Nonlinear Science and Numerical Simulation, 14(5), 1891-1900.
  • [16] Zaki, S. I.,(2000), Solitary waves of the Korteweg-de Vries-Burgers’ equation. Computer physics communications, 126(3), 207-218.
  • [17] Zaki, S. I.,(2000), A quintic B-spline finite elements scheme for the KdVB equation. Computer methods in applied mechanics and engineering, 188(1), 121-134.
  • [18] Ersoy, O. & Dag, I.,(2015), The extended B-spline collocation method for numerical solutions of Fisher equation. Air Conference Proceedings, 1648, 370011.
  • [19] Heilat, A. S., Hamid, N. N. A. & Ismail, A. I., (2016), Extended cubic B-spline method for solving a linear system of second order boundary value problems. SpringerPlus 5, 1314.
  • [20] Saka, B., & Dag, I.,(2009), Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation. Applied Mathematics and Computation, 215, 746–758.
  • [21] L¨u, S., & Lu, Q.,(2006), Fourier spectral approximation to long-time behavior of dissipative generalized KdV-Burgers equations. SIAM journal on numerical analysis, 44(2), 561-585.
  • [22] Prenter, P. M.,(1989), Splines and variational methods, John Wiley & Sons, New York.
  • [23] Irk, D., Dag, I., & Tombul, M.,(2015), Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering, 19(4), 929-934.
  • [24] Fan, E., & Zhang, H., (1998), A note on the homogeneous balance method. Physics Letters A, 246(5), 403-406.
  • [25] Haq, S., & Uddin, M.,(2009), A mesh-free method for the numerical solution of the KdV-Burgers equation. Applied Mathematical Modelling, 33(8), 3442-3449.
  • [26] L. R. T. Gardner, G. A. Gardner, and A. H. A. Ali. (1989), A finite element solution for the Kortewegde Vries equation using cubic B-splines, U.C.N.W. Maths, 89.01.
  • [27] Korkmaz, A., (2010), Numerical algorithms for solutions of Korteweg-de Vries equation. Numerical methods for partial differential equations, 26(6), 1504-1521.
  • [28] Ersoy, O., & Dag, I.,( 2015), The exponential cubic B-spline algorithm for Korteweg-de Vries equation, Advances in Numerical Analysis, Article ID 367056, 1-8
  • [29] Miura, R. M., Gardner, C. S., & Kruskal, M. D., (1968), Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. Journal of Mathematical physics, 9(8), 1204-1209.

EXTENDED B-SPLINE COLLOCATION METHOD FOR KDV-BURGERS EQUATION

Year 2019, Volume: 9 Issue: 2, 267 - 278, 01.06.2019

Abstract

The extended form of the classical polynomial cubic B-spline function is used to set up a collocation method for some initial boundary value problems derived for the Korteweg-de Vries-Burgers equation. Having nonexistence of third order derivatives of the cubic B-splines forces us to reduce the order of the term uxxx to give a coupled system of equations. The space discretization of this system is accomplished by the collocation method following the time discretization with Crank-Nicolson method. Two initial boundary value problems, one having analytical solution and the other is set up with a non analytical initial condition, have been simulated by the proposed method.

References

  • [1] Kalinowski, M. W., & Grundland, M., (1981), An exact solution of the Korteweg-de Vries equation with dissipation. Letters in Mathematical Physics, 5(1), 61-65.
  • [2] Ruderman, M. S.,(1975), Method of derivation of the Korteweg-de Vries-Burgers equation: PMM vol. 39, 4, 1975, pp. 686-694. Journal of Applied Mathematics and Mechanics, 39(4), 656-664.
  • [3] Bampi, F., & Morro, A. ,(1981), Effects of viscosity on water waves. Il Nuovo Cimento C, 4(5), 551-562.
  • [4] Brugarino, T., & Pantano, P. ,(1983), KdV-Burgers’ equation and nonlinear transmission lines. Lettere Al Nuovo Cimento (1971-1985), 38(14), 475-479.
  • [5] Parkes, E. J., & Duffy, B. R.,(1997), Travelling solitary wave solutions to a compound KdV-Burgers equation. Physics Letters A, 229(4), 217-220.
  • [6] Shu, J. J.,(1987), The proper analytical solution of the Korteweg-de Vries-Burgers equation. Journal of Physics A: Mathematical and General, 20(2), L49-L56.
  • [7] Gromov, E. M., & Tyutin, V. V.,(1997), Stationary waves described by a generalized KdV-Burgers equation. Radiophysics and quantum electronics, 40(10), 835-840.
  • [8] Wang, M.,(1996), Exact solutions for a compound KdV-Burgers equation. Physics Letters A, 213(5), 279-287.
  • [9] Zhao, H.,(2006), New explicit and exact solutions for a compound KdV-Burgers equation. Czechoslovak Journal of Physics, 56(8), 799-805.
  • [10] Yuanxi, X., & Jiashi, T.,(2005), New solitary wave solutions to the KdV-Burgers equation. International Journal of Theoretical Physics, 44(3), 293-301.
  • [11] Wazzan, L. A.,(2007), MORE SOLITON SOLUTIONS TO THE KDV AND THE KDV-BURGERS, Proc. Pakistan Acad. Sci. 44(2):117-120.2007.
  • [12] Soliman, A. A.,(2006), The modified extended tanh-function method for solving Burgers-type equations. Physica A: Statistical Mechanics and its Applications, 361(2), 394-404.
  • [13] Wang, G. W., Liu, Y. T., & Zhang, Y. Y., (2014), New exact solutions to the compound KdV-Burgers system with nonlinear terms of any order. Afrika Matematika, 25(2), 357-362.
  • [14] Wazwaz, A. M.,(2006), The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations. Physica D: Nonlinear Phenomena, 213(2), 147-151.
  • [15] Kudryashov, N. A.,(2009), On ’new travelling wave solutions’ of the KdV and the KdV-Burgers equations. Communications in Nonlinear Science and Numerical Simulation, 14(5), 1891-1900.
  • [16] Zaki, S. I.,(2000), Solitary waves of the Korteweg-de Vries-Burgers’ equation. Computer physics communications, 126(3), 207-218.
  • [17] Zaki, S. I.,(2000), A quintic B-spline finite elements scheme for the KdVB equation. Computer methods in applied mechanics and engineering, 188(1), 121-134.
  • [18] Ersoy, O. & Dag, I.,(2015), The extended B-spline collocation method for numerical solutions of Fisher equation. Air Conference Proceedings, 1648, 370011.
  • [19] Heilat, A. S., Hamid, N. N. A. & Ismail, A. I., (2016), Extended cubic B-spline method for solving a linear system of second order boundary value problems. SpringerPlus 5, 1314.
  • [20] Saka, B., & Dag, I.,(2009), Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation. Applied Mathematics and Computation, 215, 746–758.
  • [21] L¨u, S., & Lu, Q.,(2006), Fourier spectral approximation to long-time behavior of dissipative generalized KdV-Burgers equations. SIAM journal on numerical analysis, 44(2), 561-585.
  • [22] Prenter, P. M.,(1989), Splines and variational methods, John Wiley & Sons, New York.
  • [23] Irk, D., Dag, I., & Tombul, M.,(2015), Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineering, 19(4), 929-934.
  • [24] Fan, E., & Zhang, H., (1998), A note on the homogeneous balance method. Physics Letters A, 246(5), 403-406.
  • [25] Haq, S., & Uddin, M.,(2009), A mesh-free method for the numerical solution of the KdV-Burgers equation. Applied Mathematical Modelling, 33(8), 3442-3449.
  • [26] L. R. T. Gardner, G. A. Gardner, and A. H. A. Ali. (1989), A finite element solution for the Kortewegde Vries equation using cubic B-splines, U.C.N.W. Maths, 89.01.
  • [27] Korkmaz, A., (2010), Numerical algorithms for solutions of Korteweg-de Vries equation. Numerical methods for partial differential equations, 26(6), 1504-1521.
  • [28] Ersoy, O., & Dag, I.,( 2015), The exponential cubic B-spline algorithm for Korteweg-de Vries equation, Advances in Numerical Analysis, Article ID 367056, 1-8
  • [29] Miura, R. M., Gardner, C. S., & Kruskal, M. D., (1968), Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. Journal of Mathematical physics, 9(8), 1204-1209.
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

O. E. Hepson This is me

A. Korkmaz This is me

I. Dag This is me

Publication Date June 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite