BibTex RIS Cite

BEST COAPPROXIMATION IN L1 ;X

Year 2018, Volume: 8 Issue: 2, 448 - 453, 01.12.2018

Abstract

Let X be a real Banach space and let G be a closed subset of X. The set G is called coproximinal in X if for each x ∈ X, there exists y0 ∈ G such that ky − y0k ≤ kx − yk , for all y ∈ G. In this paper, we study coproximinality of L ∞ µ, G in L ∞ µ, X , when G is either separable or reflexive coproximinal subspace of X.

References

  • Diestel, J., Uhl J. R., (1997), Vector Measures, Math. Surveys Monograghs, Vol. 15, Amer. Math. Soc. Providence, RI.
  • Franchetti, C., Furi, M., (1972), Some Characteristic Properties of Real Hilbert Spaces, Rev. Roumaine Math. Pures Appl, 17, pp. 1045-1048.
  • Haddadi M. R., Hejazjpoor N., Mazaheri, H., (2010), Some Results About Best Coapproximation in Lp(S, X), Anal. Theory Appl., 26 (1), pp. 69-75.
  • Jawdat, J., Al-sharif Sh., (2016), Coproximinality Results in K¨othe Bochner Spaces, Italian J. of Pure and Applied Math., 36, pp. 783-790.
  • Kuratowski K., Ryll-Nardzewski C., (1965), A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, pp. 397403.
  • Light W. and Cheney E., (1985), Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, New York.
  • Lindenstrauss J., Tzafriri L., (1979), Classical Banach Spaces II, Function Spaces, Springer-Verlag, New York.
  • Mazaheri H., Jesmani S., (2007), Some results on best coapproximation in L1(I, G), Mediterr. J. Math., 26 (1), pp. 497-503.
  • Narang T. D., (1991), Best Coapproximation in Normed Linear Spaces, Rocky Mountain Journal of Mathematics, 22 (1), pp. 265-287.
  • Papini P. L., Singer I., (1979), Best Coapproximation in Normed Linear Spaces, Mh. Math., 88, pp. 27-44.
  • Rao, G. S., Chandrasekaran K. R., (1987), Characterizations of elements of best coapproximation in normed linear spaces, Pure and Applied Mathematika Sciences, 26, pp. 139-147.
  • Soni, D. C.; Bahadur, Lal, (1991), A Note on Coapproximation, Indian J. Pure Appl. Math., 22 (7), pp. 579- 582.
Year 2018, Volume: 8 Issue: 2, 448 - 453, 01.12.2018

Abstract

References

  • Diestel, J., Uhl J. R., (1997), Vector Measures, Math. Surveys Monograghs, Vol. 15, Amer. Math. Soc. Providence, RI.
  • Franchetti, C., Furi, M., (1972), Some Characteristic Properties of Real Hilbert Spaces, Rev. Roumaine Math. Pures Appl, 17, pp. 1045-1048.
  • Haddadi M. R., Hejazjpoor N., Mazaheri, H., (2010), Some Results About Best Coapproximation in Lp(S, X), Anal. Theory Appl., 26 (1), pp. 69-75.
  • Jawdat, J., Al-sharif Sh., (2016), Coproximinality Results in K¨othe Bochner Spaces, Italian J. of Pure and Applied Math., 36, pp. 783-790.
  • Kuratowski K., Ryll-Nardzewski C., (1965), A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, pp. 397403.
  • Light W. and Cheney E., (1985), Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, New York.
  • Lindenstrauss J., Tzafriri L., (1979), Classical Banach Spaces II, Function Spaces, Springer-Verlag, New York.
  • Mazaheri H., Jesmani S., (2007), Some results on best coapproximation in L1(I, G), Mediterr. J. Math., 26 (1), pp. 497-503.
  • Narang T. D., (1991), Best Coapproximation in Normed Linear Spaces, Rocky Mountain Journal of Mathematics, 22 (1), pp. 265-287.
  • Papini P. L., Singer I., (1979), Best Coapproximation in Normed Linear Spaces, Mh. Math., 88, pp. 27-44.
  • Rao, G. S., Chandrasekaran K. R., (1987), Characterizations of elements of best coapproximation in normed linear spaces, Pure and Applied Mathematika Sciences, 26, pp. 139-147.
  • Soni, D. C.; Bahadur, Lal, (1991), A Note on Coapproximation, Indian J. Pure Appl. Math., 22 (7), pp. 579- 582.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

J. Jawdat This is me

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite