BibTex RIS Cite

SINGLE-VALUED NEUTROSOPHIC LINE GRAPHS

Year 2018, Volume: 8 Issue: 2, 483 - 494, 01.12.2018

Abstract

In this paper, the concept of a single-valued neutrosophic line graph SVNLG of a single-valued neutrosophic graph SVNG is introduced and its properties are inves- tigated. We state a necessary and sucient condition for a SVNG to be isomorphic to its corresponding SVNLG. Moreover, a necessary and sucient condition for a SVNG to be the SVNLG of some SVNG is given. The notion of a single-valued neutrosophic clique SVNC is introduced. A complete characterization of the structure of the SVNC is presented.

References

  • Akram, M. and Davvaz, B., (2012), Strong intuitionistic fuzzy graphs, Filomat, 26 (1), pp. 177-196.
  • Akram, M. and Shahzadi, S., (2017), Neutrosophic soft graphs with application, Journal of Intelligent and Fuzzy Systems, 32 (1), pp. 841-858.
  • Akram, M. and Naz, S., (2018), Energy of Pythagorean fuzzy graphs with applications, Mathematics, (8), pp. 1-27.
  • Ashraf, S., Naz, S., Rashmanlou, H. and Malik, M. A., (2017), Regularity of graphs in single-valued neutrosophic environment, Journal of Intelligent and Fuzzy Systems, 33(1), pp. 529-542.
  • Atanassov, K. T., (1986), Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1), pp. 87-96.
  • Atanassov, K. and Gargov, G., (1989), Interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (3), pp. 343-349.
  • Bhattacharya, P., (1987), Some remarks on fuzzy graphs, Pattern Recognition Letters, 6 (5), pp. 302.
  • Broumi, S., Talea, M., Bakali, A. and Smarandache, F., (2016), Single-valued neutrosophic graphs
  • Journal of new theory, pp. 86-101. Dhavaseelan, R., Vikramaprasad, R. and Krishnaraj. V., (2015), Certain types of neutrosophic graphs
  • Int. J. of Mathematical Sciences and Applications, 5 (2), pp. 333-339. Harary, F., (1972) Graph Theory, 3rd Edition, Addison-Wesley, Reading, MA.
  • Kaufmann, A., (1973), Introduction a la Theorie des Sour-ensembles Flous, Masson et Cie 1.
  • Mordeson, J. N., (1993), Fuzzy line graphs, Pattern Recognition Letters, 14, pp. 381-384.
  • Nair, P. S. and Cheng, S-C. Cliques and fuzzy cliques in fuzzy graphs, IEEE 2001.
  • Naz, S., Rashmanlou, H. and Malik, M. A., (2017), Operations on single-valued neutrosophic graphs with application, Journal of Intelligent and Fuzzy Systems, 32(3), pp. 2137-2151.
  • Naz, S., Akram, M. and Smarandache, F., (2018), Certain notions of energy in single-valued neutro- sophic graphs, Axioms, 7(3), pp. 1-30.
  • Naz, S., Malik, M. A. and Rashmanlou, H., (2018), Hypergraphs and transversals of hypergraphs in interval-valued intuitionistic fuzzy setting, The Journal of Multiple-Valued Logic and Soft Computing, (4-6), PP. 399-417.
  • Naz, S., Ashraf, S. and Akram, M., (2018), A novel approach to decision-making with Pythagorean fuzzy information, Mathematics, 6(6), pp. 1-28.
  • Rosenfeld, A., (1975), Fuzzy graphs, Fuzzy Sets and their Applications (L. A. Zadeh, K. S. Fu, M. Shimura, Eds.) Academic Press, New York, pp. 77-95.
  • Sahoo, S. and Pal, M., (2015), Intuitionistic fuzzy competition graphs, J. Appl. Math. Comput., 52 (1), pp. 37-57.
  • Sahoo, S. and Pal, M., (2017), Intuitionistic fuzzy tolerance graph with application, Journal of Applied
  • Mathematics and Computing, 55 (1-2), pp. 495-511. Smarandache, F., A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
  • Vasantha Kandasamy, W. B., Ilanthenral, K. and Smarandache, F., (2015), Neutrosophic Graphs: A
  • New Dimension to Graph Theory, kindle Edition. Wang, H., Smarandache, F., Zhang, Y. Q. and Sunderraman, R., (2010), Single-valued neutrosophic sets, Multispace and Multistructure, 4, pp. 410-413.
  • Yang, H. L., Guo, Z. L., She, Y. and Liao, X., (2016), On single-valued neutrosophic relations, Journal of Intelligent and Fuzzy Systems, 30, pp. 1045-1056.
  • Zadeh, L. A., (1965), Fuzzy sets, Information and Control, 8(3), pp. 338-353.
Year 2018, Volume: 8 Issue: 2, 483 - 494, 01.12.2018

Abstract

References

  • Akram, M. and Davvaz, B., (2012), Strong intuitionistic fuzzy graphs, Filomat, 26 (1), pp. 177-196.
  • Akram, M. and Shahzadi, S., (2017), Neutrosophic soft graphs with application, Journal of Intelligent and Fuzzy Systems, 32 (1), pp. 841-858.
  • Akram, M. and Naz, S., (2018), Energy of Pythagorean fuzzy graphs with applications, Mathematics, (8), pp. 1-27.
  • Ashraf, S., Naz, S., Rashmanlou, H. and Malik, M. A., (2017), Regularity of graphs in single-valued neutrosophic environment, Journal of Intelligent and Fuzzy Systems, 33(1), pp. 529-542.
  • Atanassov, K. T., (1986), Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1), pp. 87-96.
  • Atanassov, K. and Gargov, G., (1989), Interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (3), pp. 343-349.
  • Bhattacharya, P., (1987), Some remarks on fuzzy graphs, Pattern Recognition Letters, 6 (5), pp. 302.
  • Broumi, S., Talea, M., Bakali, A. and Smarandache, F., (2016), Single-valued neutrosophic graphs
  • Journal of new theory, pp. 86-101. Dhavaseelan, R., Vikramaprasad, R. and Krishnaraj. V., (2015), Certain types of neutrosophic graphs
  • Int. J. of Mathematical Sciences and Applications, 5 (2), pp. 333-339. Harary, F., (1972) Graph Theory, 3rd Edition, Addison-Wesley, Reading, MA.
  • Kaufmann, A., (1973), Introduction a la Theorie des Sour-ensembles Flous, Masson et Cie 1.
  • Mordeson, J. N., (1993), Fuzzy line graphs, Pattern Recognition Letters, 14, pp. 381-384.
  • Nair, P. S. and Cheng, S-C. Cliques and fuzzy cliques in fuzzy graphs, IEEE 2001.
  • Naz, S., Rashmanlou, H. and Malik, M. A., (2017), Operations on single-valued neutrosophic graphs with application, Journal of Intelligent and Fuzzy Systems, 32(3), pp. 2137-2151.
  • Naz, S., Akram, M. and Smarandache, F., (2018), Certain notions of energy in single-valued neutro- sophic graphs, Axioms, 7(3), pp. 1-30.
  • Naz, S., Malik, M. A. and Rashmanlou, H., (2018), Hypergraphs and transversals of hypergraphs in interval-valued intuitionistic fuzzy setting, The Journal of Multiple-Valued Logic and Soft Computing, (4-6), PP. 399-417.
  • Naz, S., Ashraf, S. and Akram, M., (2018), A novel approach to decision-making with Pythagorean fuzzy information, Mathematics, 6(6), pp. 1-28.
  • Rosenfeld, A., (1975), Fuzzy graphs, Fuzzy Sets and their Applications (L. A. Zadeh, K. S. Fu, M. Shimura, Eds.) Academic Press, New York, pp. 77-95.
  • Sahoo, S. and Pal, M., (2015), Intuitionistic fuzzy competition graphs, J. Appl. Math. Comput., 52 (1), pp. 37-57.
  • Sahoo, S. and Pal, M., (2017), Intuitionistic fuzzy tolerance graph with application, Journal of Applied
  • Mathematics and Computing, 55 (1-2), pp. 495-511. Smarandache, F., A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
  • Vasantha Kandasamy, W. B., Ilanthenral, K. and Smarandache, F., (2015), Neutrosophic Graphs: A
  • New Dimension to Graph Theory, kindle Edition. Wang, H., Smarandache, F., Zhang, Y. Q. and Sunderraman, R., (2010), Single-valued neutrosophic sets, Multispace and Multistructure, 4, pp. 410-413.
  • Yang, H. L., Guo, Z. L., She, Y. and Liao, X., (2016), On single-valued neutrosophic relations, Journal of Intelligent and Fuzzy Systems, 30, pp. 1045-1056.
  • Zadeh, L. A., (1965), Fuzzy sets, Information and Control, 8(3), pp. 338-353.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. Naz This is me

M. A. Malik This is me

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite