BibTex RIS Cite
Year 2018, Volume: 8 Issue: 1.1, 275 - 283, 01.09.2018

Abstract

References

  • Allahyar M., Rostamy-Malkhalifeh M. (2015). “An improved approach for estimating returns to scale in DEA”. Bull Malays Math Sci Soc. 37(4), 1185-1194.
  • Banker R.D., Charnes A., Cooper W. W. (1984). “Some models for estimating technical and scale efficiencies in date envelopment analysis”. Manage Sci. 30, 1078-1092.
  • Banker R.D. (1984). “ Estimating most productive scale size using data envelopment analysis”. Eur J Oper Res. 17, 35-44.
  • Banker R.D., Cooper W.W., Thrall R.M., Seiford L.M., Zhu J. (2004). “Returns to scale in different
  • DEA models”. Eur J Oper Res. 154, 345-362. Banker R.D., Thrall R.M. (1992). “Estimation of returns to scale using date envelopment analysis”. Eur J Oper Res. 62, 74-84.
  • Charnes A., Cooper W.W., Rhodes E. (1978). “Measuring the efficiency of decision making units”. Eur J Oper Res. 2, 429-444.
  • Cooper W.W., Park K.S., Pastor J.T. (2000). “RAM: A range adjusted measure of efficiency”. J Prod Anal. 11, 5-42.
  • Forsund F.R. (1996). “On the calculation of scale elasticities in DEA models”. J Prod Anal. 7, 283-302
  • Forsund F.R., Hjalmarsson L., Krivonozhko V.E., Utkin O.B. (2007). “Calculation of scale elasticities in DEA models: Direct and indirect approaches”. J Prod Anal. 28, 45-56.
  • Golany B., Yu G. (1997). “Estimating returns to scale in DEA”. Eur J Oper Res. 103, 28-37.
  • Hadjicostas P., Soteriou A.C. (2006). “One-sided elasticities and technical efficiency in multi-output production: A theoretical framework”. Eur J Oper Res. 198, 425-449.
  • Jahanshahloo G.R., Soleimani-damaneh M., Rostamy-Malkhalifeh M. (2005). “An enhanced procedure for estimating returns-to-scale in DEA”. Appl Math Comput. 171, 1226-1238.
  • Podinovski V.V., Fosund F.R. (2010). “Differential characteristics of efficient frontiers in data envel- opment analysis”. Oper Res. 58, 1743-1754.
  • Podinovski V.V., Forsund F.R., Krivonozhko V.E. (2009). “A simple derivation of scale elasticity in data envelopment analysis”. Eur J Oper Res. 197, 149-153.
  • Soleimani-Damaneh M. (2012). “On a basic definition of returns to scale”. Oper Res Lett. 40, 144-147.
  • Soleimani-damaneh M., Jahanshahloo G.R., Reshadi M. (2006). “On the estimation of returns to scale in FDH models”. Eur J Oper Res. 174(2), 1055-1059.
  • Tone K. (2001). “On returns to scale under weights restrictions in data envelopment analysis”. J Prod Anal. 16, 31-47.
  • Krivonozhko V.E., Forsund F.R., Lychev A.V. (2014). “Measurement of returns to scale using non- radial DEA models”. Eur J Oper Res. 232, 664-670.
  • Zarepisheh M., Soleimani-damaneh M. (2009). “A dual simplex-based method for determination of the right and left returns to scale in DEA”. Eur J Oper Res. 194, 585-591.
  • Zarepisheh M., Soleimani-damaneh M., Pourkarimi L. (2006). “Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions”. Appl Math Lett. 19(9), 964-967.
  • Zelenyuk V. (2013). “A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation”. Eur J Oper Res. 228, 592-600. Ta

ESTIMATING RETURNS TO SCALE USING NON-RADIAL DEA MODELS

Year 2018, Volume: 8 Issue: 1.1, 275 - 283, 01.09.2018

Abstract

The concept of returns to scale RTS is de ned as the ratio of the propor-tionate changes in outputs over the proportionate changes in inputs. By considering the following two facts the current paper develops some non-radial data envelopment analy-sis DEA models to address a new concept of RTS termed the component RTS :a The proportionate changes in input will not necessarily cause the proportionate changes in outputs; b If it is desired for decision maker DM to nd out about the rate of increase in a speci c component of output vector after exerting changes in inputs, the radial-based models will not be able to make this wish come true. In other words, the main objective of this work is to seek the disproportionate changes, coming in to existence in any individual components of output vector, through exerting changes on inputs of under evaluation unit. The suggested models are used in a case study that is focused on RTS estimation of some bank branches.Keywords: Data Envelopment Analysis DEA

References

  • Allahyar M., Rostamy-Malkhalifeh M. (2015). “An improved approach for estimating returns to scale in DEA”. Bull Malays Math Sci Soc. 37(4), 1185-1194.
  • Banker R.D., Charnes A., Cooper W. W. (1984). “Some models for estimating technical and scale efficiencies in date envelopment analysis”. Manage Sci. 30, 1078-1092.
  • Banker R.D. (1984). “ Estimating most productive scale size using data envelopment analysis”. Eur J Oper Res. 17, 35-44.
  • Banker R.D., Cooper W.W., Thrall R.M., Seiford L.M., Zhu J. (2004). “Returns to scale in different
  • DEA models”. Eur J Oper Res. 154, 345-362. Banker R.D., Thrall R.M. (1992). “Estimation of returns to scale using date envelopment analysis”. Eur J Oper Res. 62, 74-84.
  • Charnes A., Cooper W.W., Rhodes E. (1978). “Measuring the efficiency of decision making units”. Eur J Oper Res. 2, 429-444.
  • Cooper W.W., Park K.S., Pastor J.T. (2000). “RAM: A range adjusted measure of efficiency”. J Prod Anal. 11, 5-42.
  • Forsund F.R. (1996). “On the calculation of scale elasticities in DEA models”. J Prod Anal. 7, 283-302
  • Forsund F.R., Hjalmarsson L., Krivonozhko V.E., Utkin O.B. (2007). “Calculation of scale elasticities in DEA models: Direct and indirect approaches”. J Prod Anal. 28, 45-56.
  • Golany B., Yu G. (1997). “Estimating returns to scale in DEA”. Eur J Oper Res. 103, 28-37.
  • Hadjicostas P., Soteriou A.C. (2006). “One-sided elasticities and technical efficiency in multi-output production: A theoretical framework”. Eur J Oper Res. 198, 425-449.
  • Jahanshahloo G.R., Soleimani-damaneh M., Rostamy-Malkhalifeh M. (2005). “An enhanced procedure for estimating returns-to-scale in DEA”. Appl Math Comput. 171, 1226-1238.
  • Podinovski V.V., Fosund F.R. (2010). “Differential characteristics of efficient frontiers in data envel- opment analysis”. Oper Res. 58, 1743-1754.
  • Podinovski V.V., Forsund F.R., Krivonozhko V.E. (2009). “A simple derivation of scale elasticity in data envelopment analysis”. Eur J Oper Res. 197, 149-153.
  • Soleimani-Damaneh M. (2012). “On a basic definition of returns to scale”. Oper Res Lett. 40, 144-147.
  • Soleimani-damaneh M., Jahanshahloo G.R., Reshadi M. (2006). “On the estimation of returns to scale in FDH models”. Eur J Oper Res. 174(2), 1055-1059.
  • Tone K. (2001). “On returns to scale under weights restrictions in data envelopment analysis”. J Prod Anal. 16, 31-47.
  • Krivonozhko V.E., Forsund F.R., Lychev A.V. (2014). “Measurement of returns to scale using non- radial DEA models”. Eur J Oper Res. 232, 664-670.
  • Zarepisheh M., Soleimani-damaneh M. (2009). “A dual simplex-based method for determination of the right and left returns to scale in DEA”. Eur J Oper Res. 194, 585-591.
  • Zarepisheh M., Soleimani-damaneh M., Pourkarimi L. (2006). “Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions”. Appl Math Lett. 19(9), 964-967.
  • Zelenyuk V. (2013). “A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation”. Eur J Oper Res. 228, 592-600. Ta
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. Allahyar This is me

M. R. Malkhalifeh This is me

M. Mirbolouki This is me

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1.1

Cite